scholarly journals The Biodiversity Promotion Areas: effectiveness of agricultural direct payments on plant diversity conservation in the semi-natural grasslands of the Southern Swiss Alps

2020 ◽  
Vol 29 (14) ◽  
pp. 4155-4172
Author(s):  
Simone Ravetto Enri ◽  
Emiliano Nucera ◽  
Michele Lonati ◽  
Pier Francesco Alberto ◽  
Massimiliano Probo

Abstract An agro-environmental payment for the management of the so-called ‘Biodiversity Promotion Areas’ (BPA) has been used to accomplish biodiversity conservation goals in Switzerland. These areas have been managed according to specific limitations on mowing dates and fertilizers. We assessed the regional-scale effectiveness of BPA implementation within Ticino Canton by answering the following questions: (i) is plant species diversity higher in BPA than in conventionally managed grasslands (CMG)? (ii) which are the differences between BPA and CMG in terms of climatic, topographical, ecological, and vegetation variables? (iii) which vegetation types, functional groups, and plant species are specifically related to BPA? A total of 242 vegetation surveys (64 in BPA and 178 in CMG, respectively) was carried out in 55 farms and the main climatic and topographic features were assessed. Differences in terms of plant diversity, ecological indicator and pastoral values, species functional groups, vegetation types, and indicator species between BPA and CMG were assessed. The BPA harboured a higher plant diversity. They were located in steeper areas, at higher elevations, and characterised by lower soil nutrient content, mowing tolerance, and pastoral value than CMG. Dry meadow species number and cover were higher in BPA, while nutrient-rich meadow species number was higher in CMG. The species associated to BPA belonged to a wider range of functional groups and 38% of them belonged to the national list for biodiversity promotion in agriculture, whereas no species associated to CMG belonged to that list. Thus, our results confirmed the effectiveness of BPA for biodiversity conservation for the Southern Swiss Alps.

2017 ◽  
Vol 20 (1) ◽  
pp. 1-20 ◽  
Author(s):  
FABIO ANGEOLETTO ◽  
JUAN PEDRO RUIZ SANZ ◽  
RICARDO MASSULO ALBERTIN ◽  
FREDERICO FONSECA DA SILVA

Abstract Home gardens have considerable biodiversity conservation potential. However, these spaces are unplanned, and there is little information about the flora diversity in the backyards of different social classes. The current study has quantified and compared plant diversity in the backyards of two neighborhoods located in the metropolitan region of Maringá - RMM (Paraná, Brazil), namely, Conjunto Triangulo and Zona 02. The diversity patterns were markedly different when the neighborhoods were compared. Therefore the present study has set some planning guidelines aiming at increasing the presence of woody vegetation, as well as at contributing to biodiversity conservation, including the conservation of endangered plant species, in the backyards of the RMM.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 369 ◽  
Author(s):  
Araújo ◽  
Moreira ◽  
Falcão ◽  
Borges ◽  
Fagundes ◽  
...  

Host plants may harbor a variable number of galling insect species, with some species being able to harbor a high diversity of these insects, being therefore called superhost plants. In the present study, we tested the hypothesis that the occurrence of superhost plant species of genus Qualea (Vochysiaceae) affects the structure of plant–galling insect ecological networks in Brazilian Cerrado. We sampled a total of 1882 plants grouped in 131 species and 43 families, of which 64 species and 31 families of host plants hosted 112 galling insect species. Our results showed that occurrence of superhosts of genus Qualea increased the linkage density of plant species, number of observed interactions, and the size of plant–galling insect networks and negatively affected the network connectance (but had no effect on the residual connectance). Although the occurrence of Qualea species did not affect the plant species richness, these superhosts increased the species richness and the number of interactions of galling insects. Our study represents a step forward in relation to previous studies that investigated the effects of plant diversity on the plant–insect networks, showing that few superhost plant species alter the structure of plant–herbivore networks, even without having a significant effect on plant diversity.


Alpine Botany ◽  
2020 ◽  
Vol 130 (2) ◽  
pp. 141-156
Author(s):  
Tobias Zehnder ◽  
Andreas Lüscher ◽  
Carmen Ritzmann ◽  
Caren M. Pauler ◽  
Joel Berard ◽  
...  

Abstract Abandonment of pastures and successional shrub expansion are widespread in European mountain regions. Moderate shrub encroachment is perceived beneficial for plant diversity by adding new species without outcompeting existing ones, yet systematic evidence is missing. We surveyed vegetation along 24 transects from open pasture into shrubland across the Swiss Alps using a new protocol distinguishing different spatial scales, shrub cover of each plot (2 × 2 m) and larger-scale zonal cover along the transect. Data were analysed using generalized linear models of shrub cover, shrub species and environmental conditions, such as geology, aspect or soil. Most shrub communities were dominated by Alnus viridis (62% of transects) and Pinus mugo (25%), and the rest by other shrub species (13%). These dominant shrub species explained vegetation response to shrub cover well, without need of environmental variables in the model. Compared to open pasture, A. viridis resulted in an immediate linear decline in plant species richness and a marginal increase in beta-diversity (maximally + 10% at 35% cover). Dense A. viridis hosted 62% less species than open pasture. In P. mugo, species richness remained stable until 40% shrub cover and dropped thereafter; beta-diversity peaked at 35% cover. Hence, scattered P. mugo increases beta-diversity without impairing species richness. In transects dominated by other shrubs, species richness and beta-diversity peaked at 40–60% shrub cover (+ 23% both). A. viridis reduced species richness in a larger area around the shrubs than P. mugo. Therefore, effects of shrub encroachment on plant diversity cannot be generalized and depend on dominant shrub species.


2021 ◽  
Vol 118 (49) ◽  
pp. e2111321118
Author(s):  
George N. Furey ◽  
David Tilman

Fertile soils have been an essential resource for humanity for 10,000 y, but the ecological mechanisms involved in the creation and restoration of fertile soils, and especially the role of plant diversity, are poorly understood. Here we use results of a long-term, unfertilized plant biodiversity experiment to determine whether biodiversity, especially plant functional biodiversity, impacted the regeneration of fertility on a degraded sandy soil. After 23 y, plots containing 16 perennial grassland plant species had, relative to monocultures of these same species, ∼30 to 90% greater increases in soil nitrogen, potassium, calcium, magnesium, cation exchange capacity, and carbon and had ∼150 to 370% greater amounts of N, K, Ca, and Mg in plant biomass. Our results suggest that biodiversity, likely in combination with the increased plant productivity caused by higher biodiversity, led to greater soil fertility. Moreover, plots with high plant functional diversity, those containing grasses, legumes, and forbs, accumulated significantly greater N, K, Ca, and Mg in the total nutrient pool (plant biomass and soil) than did plots containing just one of these three functional groups. Plant species in these functional groups had trade-offs between their tissue N content, tissue K content, and root mass, suggesting why species from all three functional groups were essential for regenerating soil fertility. Our findings suggest that efforts to regenerate soil C stores and soil fertility may be aided by creative uses of plant diversity.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 534
Author(s):  
Pavel Samec ◽  
Jiří Volánek ◽  
Miloš Kučera ◽  
Pavel Cudlín

Plant distribution is most closely associated with the abiotic environment. The abiotic environment affects plant species’ abundancy unevenly. The asymmetry is further deviated by human interventions. Contrarily, soil properties preserve environmental influences from the anthropogenic perturbations. The study examined the supra-regional similarities of soil effects on plant species’ abundance in temperate forests to determine: (i) spatial relationships between soil property and forest-plant diversity among geographical regions; (ii) whether the spatial dependencies among compared forest-diversity components are influenced by natural forest representation. The spatial dependence was assessed using geographically weighted regression (GWR) of soil properties and plant species abundance from forest stands among 91 biogeographical regions in the Czech Republic (Central Europe). Regional soil properties and plant species abundance were acquired from 7550 national forest inventory plots positioned in a 4 × 4 km grid. The effect of natural forests was assessed using linear regression between the sums of squared GWR residues and protected forest distribution in the regions. Total diversity of forest plants is significantly dependent on soil-group representation. The soil-group effect is more significant than that of bedrock bodies, most of all in biogeographical regions with protected forest representation >50%. Effects of soil chemical properties were not affected by protected forest distribution. Spatial dependency analysis separated biogeographical regions of optimal forest plant diversity from those where inadequate forest-ecosystem diversity should be increased alongside soil diversity.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1540
Author(s):  
Bence Fülöp ◽  
Bálint Pacsai ◽  
Judit Bódis

Semi-natural grasslands were previously established through traditional land use and maintained by active management, but their extension nowadays is declining rapidly, particularly in areas that also have tourism potential. In parallel, the conservation value of the remaining areas is increasing. The shore of Lake Balaton is a particularly good example, as Lake Balaton is an area highly affected by tourism, yet there have been valuable habitats able to survive and provide refuge for many vulnerable, protected species. Fortunately, we have reliable information about the vegetation of the area from two decades ago. Comparing these data with our recent surveys we investigated the changes in habitats and the distribution of protected plant species in connection with the active conservation treatments such as grazing or cutting. Our results show that in areas where treatments are still ongoing, protected plant species are more likely to survive, or even other species can appear, which is in clear contrast with conditions experienced in abandoned areas, where at least seven protected species have disappeared. According to our results, minor, but appropriately chosen and well-executed management interventions, can help in the long-term maintenance of species-rich habitats and improving the conservation status of threatened species.


2017 ◽  
Vol 215 (2) ◽  
pp. 756-765 ◽  
Author(s):  
Teng Yang ◽  
Jonathan M. Adams ◽  
Yu Shi ◽  
Jin-sheng He ◽  
Xin Jing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document