Genetic diversity of durum wheat as determined by AFLP in fluorescence

2010 ◽  
Vol 54 (1) ◽  
pp. 198-200 ◽  
Author(s):  
F. Sciacca ◽  
C. Fichera ◽  
S. Silvestro ◽  
E. Conte ◽  
M. Palumbo
2014 ◽  
Vol 42 (4) ◽  
pp. 677-686
Author(s):  
M. Rajabi Hashjin ◽  
M.H. Fotokian ◽  
M. Agahee Sarbrzeh ◽  
M. Mohammadi ◽  
D. Talei

2012 ◽  
Vol 48 (No. 1) ◽  
pp. 23-32 ◽  
Author(s):  
I. Bellil ◽  
M. Chekara Bouziani ◽  
D. Khelifi

Saharan wheats have been studied particularly from a botanical viewpoint. Genotypic identification, classification and genetic diversity studies to date were essentially based on the morphology of the spike and grain. For this, the allelic variation at the glutenin loci was studied in a set of Saharan bread and durum wheats from Algerian oases where this crop has been traditionally cultivated. The high molecular weight and low molecular weight glutenin subunit composition of 40 Saharan bread and 30 durum wheats was determined by SDS-PAGE. In Saharan bread wheats 32 alleles at the six glutenin loci were detected, which in combination resulted in 36 different patterns including 17 for HMW and 23 for LMW glutenin subunits. For the Saharan durum wheats, 29 different alleles were identified for the five glutenin loci studied. Altogether, 29 glutenin patterns were detected, including 13 for HMW-GS and 20 for LMW-GS. Three new alleles were found in Saharan wheats, two in durum wheat at the Glu-B1 and Glu-B3 loci, and one in bread wheat at the Glu-B1 locus. The mean indices of genetic variation at the six loci in bread wheat and at the five loci in durum wheat were 0.59 and 0.63, respectively, showing that Saharan wheats were more diverse. This information could be useful to select Saharan varieties with improved quality and also as a source of genes to develop new lines when breeding for quality.


2011 ◽  
Vol 30 (3) ◽  
pp. 578-589 ◽  
Author(s):  
Ana Carvalho ◽  
Henrique Guedes-Pinto ◽  
José Eduardo Lima-Brito

Plants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 116 ◽  
Author(s):  
Fiore ◽  
Mercati ◽  
Spina ◽  
Blangiforti ◽  
Venora ◽  
...  

During the XX Century, the widespread use of modern wheat cultivars drastically reduced the cultivation of ancient landraces, which nowadays are confined to niche cultivation areas. Several durum wheat landraces adapted to the extreme environments of the Mediterranean region, are still being cultivated in Sicily, Italy. Detailed knowledge of the genetic diversity of this germplasm could lay the basis for their efficient management in breeding programs, for a wide-range range of traits. The aim of the present study was to characterize a collection of durum wheat landraces from Sicily, using single nucleotide polymorphisms (SNP) markers, together with agro-morphological, phenological and quality-related traits. Two modern cv. Simeto, Claudio, and the hexaploid landrace, Cuccitta, were used as outgroups. Cluster analysis and Principal Coordinates Analysis (PCoA) allowed us to identify four main clusters across the analyzed germplasm, among which a cluster included only historical and modern varieties. Likewise, structure analysis was able to distinguish the ancient varieties from the others, grouping the entries in seven cryptic genetic clusters. Furthermore, a Principal Component Analysis (PCA) was able to separate the modern testers from the ancient germplasm. This approach was useful to classify and evaluate Sicilian ancient wheat germplasm, supporting their safeguard and providing a genetic fingerprint that is necessary for avoiding commercial frauds to sustaining the economic profits of farmers resorting to landraces cultivation.


2019 ◽  
Author(s):  
Laura Pascual ◽  
Magdalena Ruiz ◽  
Matilde López-Fernández ◽  
Helena Pérez-Peña ◽  
Elena Benavente ◽  
...  

Abstract Background One of the main goals for the XXI century breeding is the development of crop cultivars that can maintain current yields under unfavorable environments. Landraces that have been grown under varied local conditions include genetic diversity that will be essential to achieve this objective. The Center of Plant Genetic Resources of the Spanish Institute for Agriculture Research (CRF-INIA) holds a wide collection of wheat landraces. These accessions, locally adapted to a really wide diversity of eco-climatic conditions, represent a highly valuable material for breeding. However, their efficient use requires an exhaustive genetic characterization. The overall aim of this study was to assess the diversity and population structure of a selected set of 380 Spanish landraces and 52 reference varieties of bread and durum wheat by high-throughput genotyping. Results DArTseq GBS approach generated 10K SNPs and 40K DArT high-quality markers that were mapped against the currently available bread wheat reference genome. The markers with known location were distributed in all the chromosomes, having a relatively well-balanced genome-wide coverage. The genetic analysis showed that Spanish wheat landraces are clustered in different groups, thus representing genetic pools capable to provide different allelic variation. The subspecies had a major impact on the population structure of durum wheat landraces, identifying three different clusters that corresponded to subsps. durum, turgidum and dicoccon. The population structure of bread wheat landraces was more biased by geographic origin. Conclusions The results showed a wider genetic diversity in landraces when compared to a reference set that included commercial varieties, and a higher divergence between landraces and the reference set in durum wheat than in bread wheat. Some genomic regions with patterns of variation that differ between landraces and reference varieties could be detected, pointing out loci under selection during crop improvement that could help to target breeding efforts. The results obtained from this work will be highly valuable for future GWAS analysis.


2020 ◽  
Author(s):  
Maroua Ouaja ◽  
Bochra Amina Bahri ◽  
Lamia Aouini ◽  
Sahbi Ferjaoui ◽  
Maher Medini ◽  
...  

Abstract Background: Tunisia is a center of genetic diversity of durum wheat and has a large number of abandoned old local landraces. An accurate investigation and characterization of the morphological and genetic features of these landraces would allow their rehabilitation and use for practical and beneficial purposes. In this context, a collection of 304 local accessions of durum wheat, collected from five regions and three climatic zones of central and southern Tunisia, was studied. Results: Morphological characterization was carried out using 12 spike-related traits and rendered a mean Shannon-Weaver Index (H') of 0.80 indicating the presence of a high level of polymorphism among accessions. Based on these traits 11 local landraces, namely Mahmoudi, Azizi, Jneh Khotifa, Mekki, Biskri, Taganrog, Biada, Badri, Richi, Roussia and Souri were identified. Spike length (H’=0.98) and shape (H’=0.86) with grains size (H’=0.94), form (H’=0.87) and color (H’=0.86) were the most polymorphic morphological traits. The genetic diversity was assessed using 10 SSR markers, with a polymorphic information content (PIC) of 0.69. Levels of genetic diversity were generally high, with a Shannon's Information Index (I) of 0.62 and a gene diversity (He) of 0.35. In addition, population structure analysis distinguished 11 genetic groups resulted from STRUCTURE and Mantel test showed a significant correlation between genetic and morphological distances. Analysis of molecular variance (AMOVA) showed high genetic variations within regions (81%) and wheat subpopulations (41%) showing a considerable amount of admixture between landraces realized by farmers; as well as a moderate (19%) and high (59%) genetic variations among regions and wheat subpopulations, indicating practices of selection pressure conducted by farmers. The Mahmoudi landrace showed spike densities significantly different between the center to the south of Tunisia; notably loose spikes with open glumes in the south and compact ones in the center, which may represent an adaptation form for tolerance to high temperature. Conclusion: Overall, this study highlights the genetic richness of local resources for better in situ or ex situ conservation and for their subsequent use in plant breeding programs.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 957 ◽  
Author(s):  
Youssef Chegdali ◽  
Hassan Ouabbou ◽  
Abdelkhalid Essamadi ◽  
Fausto Cervantes ◽  
Maria Itria Ibba ◽  
...  

Landraces and old wheat cultivars display great genetic variation and constitute a valuable resource for the improvement of modern varieties, especially in terms of quality. Gluten quality is one of the major determinants of wheat quality, and it is greatly influenced by variation in the high molecular weight and low molecular weight glutenin subunits (HMW-GS and LMW-GS). Identification of novel allelic variants for either of the two groups of the gluten-forming proteins could greatly assist in the improvement of wheat gluten quality. In the present study, the allelic composition of the HMW- and LMW-GS of ninety-five durum wheat accessions was evaluated. These accessions included Moroccan cultivars and landraces and North American cultivars and were all conserved in the National Gene Bank from Morocco. In total, 20 cataloged alleles and 12 novel alleles were detected. For the HMW-GS, two alleles were found at the Glu-A1 locus, and seven different allelic variants were identified at the Glu-B1 locus. Among them, two alleles were new (alleles Glu-B1cp and co). Additionally, two of the analyzed accessions exhibited the Glu-D1d allele, suggesting the presence of the Glu-D1 locus introgression. For the LWM-GS, eight, ten and two alleles were identified at the Glu-A3, Glu-B3 and Glu-B2 loci, respectively. Among them, two new allelic variants were identified at the Glu-A3 locus, and seven new allelic variants were identified at the Glu-B3 locus. Overall, the Moroccan landraces exhibited a greater genetic diversity and a greater number of glutenin alleles compared to the Moroccan and North American durum wheat cultivars. The novel germplasm and glutenin alleles detected in this study could contribute to the improvement of durum wheat quality and the expansion of modern durum wheat genetic diversity.


Sign in / Sign up

Export Citation Format

Share Document