scholarly journals Reviewing Chandipura: A Vesiculovirus in Human Epidemics

2007 ◽  
Vol 27 (4-5) ◽  
pp. 275-298 ◽  
Author(s):  
Soumen Basak ◽  
Arindam Mondal ◽  
Smarajit Polley ◽  
Subhradip Mukhopadhyay ◽  
Dhrubajyoti Chattopadhyay

Chandipura virus, a member of the rhabdoviridae family and vesiculovirus genera, has recently emerged as human pathogen that is associated with a number of outbreaks in different parts of India. Although, the virus closely resembles with the prototype vesiculovirus, Vesicular Stomatitis Virus, it could be readily distinguished by its ability to infect humans. Studies on Chandipura virus while shed light into distinct stages of viral infection; it may also allow us to identify potential drug targets for antiviral therapy. In this review, we have summarized our current understanding of Chandipura virus life cycle at the molecular detail with particular interest in viral RNA metabolisms, namely transcription, replication and packaging of viral RNA into nucleocapsid structure. Contemporary research on otherwise extensively studied family member Vesicular Stomatitis Virus has also been addressed to present a more comprehensive picture of vesiculovirus life cycle. Finally, we reveal examples of protein economy in Chandipura virus life-cycle whereby each viral protein has evolved complexity to perform multiple tasks.

2009 ◽  
Vol 154 (4) ◽  
pp. 595-600 ◽  
Author(s):  
W. Wang ◽  
Y. J. Fu ◽  
Y. G. Zu ◽  
N. Wu ◽  
J. Reichling ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 108
Author(s):  
Victor Latorre ◽  
Ron Geller

The viral order Mononegavirales consist of eight virus families. Members of these families include some of the most infectious (Measles, lethal (Ebola and Rabies), and most common viruses (Respiratory syncytial virus, RSV). Despite their medical importance, few vaccines and no antiviral treatments are available for treating infections with these viruses. Being obligate cellular parasites, viruses must rely on the cellular machinery for their replication. One example of this is the widespread use of molecular chaperones, which assist the correct folding of newly synthesized proteins, refold misfolded or aggregated proteins, and play key roles in maintaining proteostasis in cells. Targeting chaperones required for viral replication may, therefore, provide an antiviral approach. In this work, we set out to identify all the members of the cytoplasmic chaperone network that are involved in the replication of RSV using an RNA interference screen. Among our hits is valosin-containing protein (VCP; also known as p97), a chaperone involved in ubiquitin-mediated protein degradation, which has been shown to play a role in the life cycle of several viruses. We investigated the role of VCP during RSV and vesicular stomatitis virus (VSV) infections using specific VCP inhibitors. Our results suggest that VCP activity is necessary for RSV and VSV replication and may constitute a promising antiviral approach for the Mononegavirales.


1971 ◽  
Vol 17 (9) ◽  
pp. 1149-1155
Author(s):  
G. M. Kouroupis ◽  
L. R. Sabina

The production of vesicular stomatitis virus in MDBK cells has been shown to be markedly enhanced by the addition of whole serum to maintenance media. Maximum virus production occurred in the presence of human and fetal calf sera. When different serum protein fractions were tested, cultures nourished with medium containing bovine fraction IV-1 gave the highest infectivity, but fraction IV-1 did not completely substitute for whole serum. In contrast, fetuin was strongly inhibitory for the production of infectious virus. No loss of infectivity was observed if serum was added to cultures as late as 8 h postinfection. The incorporation of 3H-uridine into viral RNA of actinomycin D treated cultures nourished with serum or serum-free media proceeded at nearly similar rates from the time of infection up to 7 h postinfection. This result indicates that viral RNA synthesis was initiated with equal amounts of template. Late in the virus replicative cycle the incorporation rates of radioactive label were higher in serum-containing cultures than in serum-free cultures. The results of this investigation suggest that serum does not have a direct specific viral function but rather acts indirectly through the host cell to promote maximum virus production.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Jasmin Lindner ◽  
Kamila Anna Meissner ◽  
Isolmar Schettert ◽  
Carsten Wrenger

Malaria is an infectious disease that results in serious health problems in the countries in which it is endemic. Annually this parasitic disease leads to more than half a million deaths; most of these are children in Africa. An effective vaccine is not available, and the treatment of the disease is solely dependent on chemotherapy. However, drug resistance is spreading, and the identification of new drug targets as well as the development of new antimalarials is urgently required. Attention has been drawn to a variety of essential plasmodial proteins, which are targeted to intra- or extracellular destinations, such as the digestive vacuole, the apicoplast, or into the host cell. Interfering with the action or the transport of these proteins will impede proliferation of the parasite. In this mini review, we will shed light on the present discovery of chemotherapeutics and potential drug targets involved in protein trafficking processes in the malaria parasite.


2018 ◽  
Vol 92 (8) ◽  
pp. e00146-18 ◽  
Author(s):  
Ryan H. Gumpper ◽  
Weike Li ◽  
Carlos H. Castañeda ◽  
M. José Scuderi ◽  
James K. Bashkin ◽  
...  

ABSTRACTPolyamides have been shown to bind double-stranded DNA by complementing the curvature of the minor groove and forming various hydrogen bonds with DNA. Several polyamide molecules have been found to have potent antiviral activities against papillomavirus, a double-stranded DNA virus. By analogy, we reason that polyamides may also interact with the structured RNA bound in the nucleocapsid of a negative-strand RNA virus. Vesicular stomatitis virus (VSV) was selected as a prototype virus to test this possibility since its genomic RNA encapsidated in the nucleocapsid forms a structure resembling one strand of an A-form RNA duplex. One polyamide molecule, UMSL1011, was found to inhibit infection of VSV. To confirm that the polyamide targeted the nucleocapsid, a nucleocapsid-like particle (NLP) was incubated with UMSL1011. The encapsidated RNA in the polyamide-treated NLP was protected from thermo-release and digestion by RNase A. UMSL1011 also inhibits viral RNA synthesis in the intracellular activity assay for the viral RNA-dependent RNA polymerase. The crystal structure revealed that UMSL1011 binds the structured RNA in the nucleocapsid. The conclusion of our studies is that the RNA in the nucleocapsid is a viable antiviral target of polyamides. Since the RNA structure in the nucleocapsid is similar in all negative-strand RNA viruses, polyamides may be optimized to target the specific RNA genome of a negative-strand RNA virus, such as respiratory syncytial virus and Ebola virus.IMPORTANCENegative-strand RNA viruses (NSVs) include several life-threatening pathogens, such as rabies virus, respiratory syncytial virus, and Ebola virus. There are no effective antiviral drugs against these viruses. Polyamides offer an exceptional opportunity because they may be optimized to target each NSV. Our studies on vesicular stomatitis virus, an NSV, demonstrated that a polyamide molecule could specifically target the viral RNA in the nucleocapsid and inhibit viral growth. The target specificity of the polyamide molecule was proved by its inhibition of thermo-release and RNA nuclease digestion of the RNA bound in a model nucleocapsid, and a crystal structure of the polyamide inside the nucleocapsid. This encouraging observation provided the proof-of-concept rationale for designing polyamides as antiviral drugs against NSVs.


2020 ◽  
Author(s):  
Karen Sargsyan ◽  
Chien-Chu Lin ◽  
Ting Chen ◽  
Cédric Grauffel ◽  
Yi-Ping Chen ◽  
...  

<p>We present a near-term treatment strategy to tackle pandemic outbreaks of coronaviruses with no specific drugs/vaccines by combining evolutionary and physical principles to identify conserved viral domains containing druggable Zn-sites that can be targeted by clinically safe Zn-ejecting compounds. By applying this strategy to SARS-CoV-2 polyprotein-1ab, we predicted multiple labile Zn-sites in papain-like cysteine protease (PL<sup>pro</sup>), nsp10 transcription factor, and nsp13 helicase. These are attractive drug targets because they are highly conserved among coronaviruses and play vital structural/catalytic roles in viral proteins indispensable for viral replication. We show that five Zn-ejectors can release Zn<sup>2+ </sup>from PL<sup>pro</sup> and nsp10, and clinically-safe disulfiram and ebselen can covalently bind to the Zn-bound/catalytic cysteines in both proteins. Notably, disulfiram and ebselen inhibited PL<sup>pro</sup> protease activity with IC<sub>50</sub> in the μM range. We propose combining disulfiram/ebselen with broad-spectrum antivirals/drugs to target different conserved domains acting at various stages of the virus life cycle to synergistically inhibit SARS-CoV-2 replication and reduce the emergence of drug resistance.</p>


2018 ◽  
Vol 92 (11) ◽  
pp. e02098-17 ◽  
Author(s):  
Thomas R. Aunins ◽  
Katherine A. Marsh ◽  
Gitanjali Subramanya ◽  
Susan L. Uprichard ◽  
Alan S. Perelson ◽  
...  

ABSTRACTHepatitis C virus (HCV) infection is a global health problem, with nearly 2 million new infections occurring every year and up to 85% of these infections becoming chronic infections that pose serious long-term health risks. To effectively reduce the prevalence of HCV infection and associated diseases, it is important to understand the intracellular dynamics of the viral life cycle. Here, we present a detailed mathematical model that represents the full hepatitis C virus life cycle. It is the first full HCV model to be fit to acute intracellular infection data and the first to explore the functions of distinct viral proteins, probing multiple hypotheses ofcis- andtrans-acting mechanisms to provide insights for drug targeting. Model parameters were derived from the literature, experiments, and fitting to experimental intracellular viral RNA, extracellular viral titer, and HCV core and NS3 protein kinetic data from viral inoculation to steady state. Our model predicts higher rates for protein translation and polyprotein cleavage than previous replicon models and demonstrates that the processes of translation and synthesis of viral RNA have the most influence on the levels of the species we tracked in experiments. Overall, our experimental data and the resulting mathematical infection model reveal information about the regulation of core protein during infection, produce specific insights into the roles of the viral core, NS5A, and NS5B proteins, and demonstrate the sensitivities of viral proteins and RNA to distinct reactions within the life cycle.IMPORTANCEWe have designed a model for the full life cycle of hepatitis C virus. Past efforts have largely focused on modeling hepatitis C virus replicon systems, in which transfected subgenomic HCV RNA maintains autonomous replication in the absence of virion production or spread. We started with the general structure of these previous replicon models and expanded it to create a model that incorporates the full virus life cycle as well as additional intracellular mechanistic detail. We compared several different hypotheses that have been proposed for different parts of the life cycle and applied the corresponding model variations to infection data to determine which hypotheses are most consistent with the empirical kinetic data. Because the infection data we have collected for this study are a more physiologically relevant representation of a viral life cycle than data obtained from a replicon system, our model can make more accurate predictions about clinical hepatitis C virus infections.


2013 ◽  
Vol 88 (3) ◽  
pp. 1461-1472 ◽  
Author(s):  
A. Mondal ◽  
K. G. Victor ◽  
R. S. Pudupakam ◽  
C. E. Lyons ◽  
G. W. Wertz

Sign in / Sign up

Export Citation Format

Share Document