Numerical Simulation of the Air Injection Process in Low Permeability Reservoirs

2019 ◽  
Vol 54 (6) ◽  
pp. 788-794
Author(s):  
Fu Cheng ◽  
Zhu Tingting ◽  
Huang Bin ◽  
Zhang Wei ◽  
Wang Ying
2012 ◽  
Author(s):  
Jianchun Xu ◽  
Ruizhong Jiang ◽  
Lisha Xie ◽  
Ruiheng Wang ◽  
Lijun Shan ◽  
...  

2014 ◽  
Author(s):  
E.. Niz-Velasquez ◽  
M. L. Trujillo ◽  
C.. Delgadillo ◽  
J.. Padilla

Abstract A great portion of the produced oil currently comes from mature fields, reason why the increase in oil production of current reservoirs is the main objective of oil companies. Thermal enhanced oil recovery processes have been studied, implemented and improved over the years. In the last decade there has been significant interest in the light oil air injection (LOAI) process since the successful implementation of the process known as High Pressure Air Injection in the Buffalo Field (USA), which is a variation from the air injection process in light oil, applicable to deep reservoirs with low permeability and porosity. Proof of this are the West Hackberry Field (USA), more than five commercial projects along the Willinston Basin (USA) and recently a pilot in the Zhong Yuan Field (China). Additionally, feasibility studies have also been initiated and performed in Mexico, Argentina and Colombia. This article proposes screening criteria for the selection of potential light oil reservoirs to be candidates for air injection, as well as a general methodology for the prioritization of the reservoirs with the highest LOAI implementation potential. Said methodology employs screening criteria, analogies and numerical simulation. The first part goes beyond the binary screening by assigning a weight to each one of the criteria, therefore resulting in a numerical ranking. For the analogies the reservoirs in which the technology has already been applied are grouped in four group types, against which the field on evaluation is compared. There is also a numerical simulation in 1D – 2D, where the injectivity with or without pressurization is evaluated, as well as the displacement stability. Additionally a multi-criteria evaluation method is used to select the best candidate.


2014 ◽  
Vol 941-944 ◽  
pp. 2521-2524
Author(s):  
Bo Cai ◽  
Yun Hong Ding ◽  
Zhou Qi Cui ◽  
Zhen Zhou Yang ◽  
Hua Shen

Nowadays, hydraulic fracturing has become the mainly treatment in low permeability reservoirs, but the hydraulic fracturing design technology in different reservoirs still use common methods. Natural fracture reservoirs mainly include granite reservoir, basalt reservoir and igneous rock reservoir which its hydrocarbon pore volume is fracture system. As the existing of natural fracture, hydraulic fracturing treatment always counting some problems, such as difficult sand pumping, easily screen-out and limited scale. In this paper, from the point of the reservoir characteristics, the mainly problems were analyzed and the corresponding methods were put forward .the core technique in this kind reservoir include communicating the distance nature fracture and meanwhile protecting the conductivity nature fracture. Production can reach 90% from natural fractures using numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document