A Methodology for Screening and Ranking of Reservoirs for Light Oil Air Injection Implementation

2014 ◽  
Author(s):  
E.. Niz-Velasquez ◽  
M. L. Trujillo ◽  
C.. Delgadillo ◽  
J.. Padilla

Abstract A great portion of the produced oil currently comes from mature fields, reason why the increase in oil production of current reservoirs is the main objective of oil companies. Thermal enhanced oil recovery processes have been studied, implemented and improved over the years. In the last decade there has been significant interest in the light oil air injection (LOAI) process since the successful implementation of the process known as High Pressure Air Injection in the Buffalo Field (USA), which is a variation from the air injection process in light oil, applicable to deep reservoirs with low permeability and porosity. Proof of this are the West Hackberry Field (USA), more than five commercial projects along the Willinston Basin (USA) and recently a pilot in the Zhong Yuan Field (China). Additionally, feasibility studies have also been initiated and performed in Mexico, Argentina and Colombia. This article proposes screening criteria for the selection of potential light oil reservoirs to be candidates for air injection, as well as a general methodology for the prioritization of the reservoirs with the highest LOAI implementation potential. Said methodology employs screening criteria, analogies and numerical simulation. The first part goes beyond the binary screening by assigning a weight to each one of the criteria, therefore resulting in a numerical ranking. For the analogies the reservoirs in which the technology has already been applied are grouped in four group types, against which the field on evaluation is compared. There is also a numerical simulation in 1D – 2D, where the injectivity with or without pressurization is evaluated, as well as the displacement stability. Additionally a multi-criteria evaluation method is used to select the best candidate.

2004 ◽  
Vol 126 (2) ◽  
pp. 119-124 ◽  
Author(s):  
O. S. Shokoya ◽  
S. A. (Raj) Mehta ◽  
R. G. Moore ◽  
B. B. Maini ◽  
M. Pooladi-Darvish ◽  
...  

Flue gas injection into light oil reservoirs could be a cost-effective gas displacement method for enhanced oil recovery, especially in low porosity and low permeability reservoirs. The flue gas could be generated in situ as obtained from the spontaneous ignition of oil when air is injected into a high temperature reservoir, or injected directly into the reservoir from some surface source. When operating at high pressures commonly found in deep light oil reservoirs, the flue gas may become miscible or near–miscible with the reservoir oil, thereby displacing it more efficiently than an immiscible gas flood. Some successful high pressure air injection (HPAI) projects have been reported in low permeability and low porosity light oil reservoirs. Spontaneous oil ignition was reported in some of these projects, at least from laboratory experiments; however, the mechanism by which the generated flue gas displaces the oil has not been discussed in clear terms in the literature. An experimental investigation was carried out to study the mechanism by which flue gases displace light oil at a reservoir temperature of 116°C and typical reservoir pressures ranging from 27.63 MPa to 46.06 MPa. The results showed that the flue gases displaced the oil in a forward contacting process resembling a combined vaporizing and condensing multi-contact gas drive mechanism. The flue gases also became near-miscible with the oil at elevated pressures, an indication that high pressure flue gas (or air) injection is a cost-effective process for enhanced recovery of light oils, compared to rich gas or water injection, with the potential of sequestering carbon dioxide, a greenhouse gas.


2008 ◽  
Vol 47 (07) ◽  
Author(s):  
J. Li ◽  
S.A. Mehta ◽  
R.G. Moore ◽  
M.G. Ursenbach ◽  
E. Zalewski ◽  
...  

2008 ◽  
Vol 11 (06) ◽  
pp. 1097-1106 ◽  
Author(s):  
Dubert Gutierrez ◽  
Archie R. Taylor ◽  
Vinodh Kumar ◽  
Matthew G. Ursenbach ◽  
Robert G. Moore ◽  
...  

Summary High-pressure air injection (HPAI) is an improved-oil-recovery (IOR) process in which compressed air is injected into a deep light-oil reservoir with the expectation that the oxygen in the injected air will react with a fraction of the reservoir oil at an elevated temperature to produce carbon dioxide. The resulting flue-gas mixture provides the main mobilizing force to the oil downstream of the reaction region, sweeping it to production wells. The combustion zone itself may provide a critical part of the sweep mechanism. In 1994, Fassihi et al. proposed a method for estimating recovery factors of light-oil air-injection projects on the basis of the performance of two successful HPAI projects. Their suggested method relies on the extrapolation of the field gas/oil ratio (GOR) up to an economic limit. In other words, it treats HPAI as an immiscible gasflood and neglects any potential oil that could be recovered by the combustion front. The truth is that, although early production during an HPAI process is caused mostly by repressurization and gasflood effects, once a pore volume of air has been injected, the combustion front becomes the main driving mechanism. Moreover, one of the unique features of air injection is the self-correcting nature of the combustion zone, which promotes good volumetric sweep of the reservoir. This paper presents laboratory and field evidence of the presence of a thermal front during HPAI operations and evidence of its beneficial impact on oil recovery. An analysis of the three HPAI projects in Buffalo field, which are the oldest HPAI projects currently in operation, shows that only a small fraction of the reservoir has been burned and, if time allows and the projects are managed appropriately, burning of more reservoir volumes could result in much higher oil recoveries than those predicted by the gasflood approach. Introduction HPAI is an emerging technology for the recovery of light oils that has proved to be a valuable IOR process, especially in deep thin low-permeability reservoirs (Erickson et al. 1994; Kumar and Fassihi 1995; Kumar et al. 2007a, 2007b; Fassihi et al. 1996, 1997). The first extended field test of HPAI began in 1963 on the Sloss field in Nebraska (Parrish et al. 1974a, 1974b), where Amoco's Combination of Forward Combustion and Waterflooding (COFCAW) process was applied as a tertiary-recovery process to a deep (6,200 ft), thin (11 ft), light-oil (38.8°API), watered-out reservoir. This COFCAW pilot recovered 83,992 bbl of oil, which is equivalent to 43% of the oil remaining in the five-spot pattern after waterflood. In 1967, the pilot was expanded from an 80- to a 960-acre project and recovered 527,000 bbl of incremental oil. However, it proved to be uneconomical, with crude-oil prices at less than USD 3/bbl. The second application of HPAI was the West Heidelberg pressure-maintenance project (Huffman et al. 1983) in the US state of Mississippi, which started in 1971 as a secondary-recovery project in the deep (11,400 ft) Cotton Valley sands. Even though oil prices were less than USD 4/bbl during the early period of the air-injection operations, payout of the project occurred at approximately 2.5 years, and the project continued to be a successful air-injection project. One interesting aspect of this project was the simulation work presented by Kumar (1991), which showed that, although the early production was mainly because of pressure maintenance, more than half of the cumulative oil production was mainly a result of thermal effects. An important milestone in the advance of HPAI was the implementation of commercial secondary HPAI projects in the North and South Dakota portions of the Williston basin, which started in 1979 and continues to be a technical and economic success (Erickson et al. 1994; Kumar and Fassihi 1995; Kumar et al. 2007a, 2007b; Fassihi et al. 1996, 1997). The estimation of ultimate recovery in HPAI projects is subject to a high level of uncertainty and requires history matching. Nevertheless, in 1994, Kumar and Fassihi (1995) proposed a method for estimating recovery factors of light-oil air-injection projects on the basis of the performance of two HPAI projects. Their suggested method relies on the extrapolation of the field GOR up to an economic limit. In other words, it considers HPAI as an immiscible gasflood. This paper intends to challenge that "gasflood" approach with a "combustion" approach, on the basis of laboratory results and field data gathered mostly from the Buffalo field, which comprises the three oldest HPAI projects currently in operation.


2018 ◽  
Vol 36 (13) ◽  
pp. 937-943 ◽  
Author(s):  
Wan-Fen Pu ◽  
Shuai Zhao ◽  
Jing-Jun Pan ◽  
Zhi-Zhong Lin ◽  
Ru-Yan Wang ◽  
...  

2019 ◽  
Vol 54 (6) ◽  
pp. 788-794
Author(s):  
Fu Cheng ◽  
Zhu Tingting ◽  
Huang Bin ◽  
Zhang Wei ◽  
Wang Ying

2016 ◽  
Vol 30 (6) ◽  
pp. 4504-4508 ◽  
Author(s):  
Pengliang Li ◽  
Zhenyi Liu ◽  
Changgen Feng ◽  
Yao Zhao ◽  
Mingzhi Li ◽  
...  

Fuel ◽  
2014 ◽  
Vol 137 ◽  
pp. 200-210 ◽  
Author(s):  
Negar Khoshnevis Gargar ◽  
Alexei A. Mailybaev ◽  
Dan Marchesin ◽  
Hans Bruining
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Tao Huang ◽  
Fuquan Song ◽  
Renyi Wang ◽  
Xiaohe Huang

Water flooding is crucial means to improve oil recovery after primary production. However, the utilization ratio of injected water is often seriously affected by heterogeneities in the reservoir. Identification of the location of the displacement fronts and the associated reservoir heterogeneity is important for the management and improvement of water flooding. In recent years, ferrofluids have generated much interest from the oil industry owning to its unique properties. First, saturation of ferrofluids alters the magnetic permeability of the porous medium, which means that the presence of ferrofluids should produce magnetic anomalies in an externally imposed magnetic field or the local geomagnetic field. Second, with a strong external magnetic field, ferrofluids can be guided into regions that were bypassed and with high residual oil saturation. In view of these properties, a potential dual-application of ferrofluid as both a tracer to locate the displacement front and a displacing fluid to improve recovery in a heterogeneous reservoir is examined in this paper. Throughout the injection process, the magnetic field generated by electromagnets and altered by the distribution of ferrofluids was calculated dynamically by applying a finite element method, and a finite volume method was used to solve the multiphase flow. Numerical simulation results indicate that the displacement fronts in reservoirs can indeed be detected, through which the major features of reservoir heterogeneity can be inferred. After the locations of the displacement fronts and reservoir heterogeneities are identified, strong magnetic fields were applied to direct ferrofluids into poorly swept regions and the efficiency of the flooding was significantly improved.


Sign in / Sign up

Export Citation Format

Share Document