scholarly journals Longitudinal strain by speckle tracking and echocardiographic parameters as predictors of adverse cardiovascular outcomes in chronic Chagas cardiomyopathy

Author(s):  
Luis Eduardo Echeverría ◽  
Lyda Z. Rojas ◽  
Oscar L. Rueda-Ochoa ◽  
Sergio Alejandro Gómez-Ochoa ◽  
Miguel A. Mayer ◽  
...  

AbstractTo analyze the prognostic value of left ventricular global longitudinal strain (LV-GLS) and other echocardiographic parameters to predict adverse outcomes in chronic Chagas cardiomyopathy (CCM). Prospective cohort study conducted in 177 consecutive patients with different CCM stages. Transthoracic echocardiography measurements were obtained following the American Society of Echocardiography recommendations. By speckle-tracking echocardiography, LV-GLS was obtained from the apical three-chamber, apical two-chamber, and apical four-chamber views. The primary composite outcome (CO) was all-cause mortality, cardiac transplantation, and a left ventricular assist device implantation. After a median follow-up of 42.3 months (Q1 = 38.6; Q3 = 52.1), the CO incidence was 22.6% (95% CI 16.7–29.5%, n = 40). The median LV-GLS value was − 13.6% (Q1 =  − 18.6%; Q3 =  − 8.5%). LVEF, LV-GLS, and E/e′ ratio with cut-off points of 40%, − 9, and 8.1, respectively, were the best independent CO predictors. We combined these three echocardiographic markers and evaluated the risk of CO according to the number of altered parameters, finding a significant increase in the risk across the groups. While in the group of patients in which all these three parameters were normal, only 3.2% had the CO; those with all three abnormal parameters had an incidence of 60%. We observed a potential incremental prognostic value of LV-GLS in the multivariate model of LVEF and E/e′ ratio, as the AUC increased slightly from 0.76 to 0.79, nevertheless, this difference was not statistically significant (p = 0.066). LV-GLS is an important predictor of adverse cardiovascular events in CCM, providing a potential incremental prognostic value to LVEF and E/e′ ratio when analyzed using optimal cut-off points, highlighting the potential utility of multimodal echocardiographic tools for predicting adverse outcomes in CCM.

2020 ◽  
Vol 21 (11) ◽  
pp. 1248-1258 ◽  
Author(s):  
E Mara Vollema ◽  
Mohammed R Amanullah ◽  
Edgard A Prihadi ◽  
Arnold C T Ng ◽  
Pieter van der Bijl ◽  
...  

Abstract Aims Cardiac damage in severe aortic stenosis (AS) can be classified according to a recently proposed staging classification. The present study investigated the incremental prognostic value of left ventricular (LV) global longitudinal strain (GLS) over stages of cardiac damage in patients with severe AS. Methods and results From an ongoing registry, a total of 616 severe symptomatic AS patients with available LV GLS by speckle tracking echocardiography were selected and retrospectively analysed. Patients were categorized according to cardiac damage on echocardiography: Stage 0 (no damage), Stage 1 (LV damage), Stage 2 (mitral valve or left atrial damage), Stage 3 (tricuspid valve or pulmonary artery vasculature damage), or Stage 4 (right ventricular damage). LV GLS was divided by quintiles and assigned to the different stages. The endpoint was all-cause mortality. Over a median follow-up of 44 [24–89] months, 234 (38%) patients died. LV GLS was associated with all-cause mortality independent of stage of cardiac damage. After incorporation of LV GLS by quintiles into the staging classification, Stages 2–4 were independently associated with outcome. LV GLS showed incremental prognostic value over clinical characteristics and stages of cardiac damage. Conclusion In this large single-centre cohort of severe AS patients, incorporation of LV GLS by quintiles in a novel proposed staging classification resulted in refinement of risk stratification by identifying patients with more advanced cardiac damage. LV GLS was shown to provide incremental prognostic value over the originally proposed staging classification.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Misato Chimura ◽  
Tetsuari Onishi ◽  
Hiroya Kawai ◽  
Shinishiro Yamada ◽  
Yoshinori Yasaka

Introduction: Reduced left ventricular (LV) global longitudinal strain (GLS) by two-dimensional speckle-tracking (2DST) echocardiography and late gadolinium enhancement (LGE) by cardiovascular magnetic resonance (CMR) have been reported to be associated with unfavorable outcome in patient with heart failure (HF). We investigated to assess these 2 markers as prognostic parameters over conventional HF markers in patients with dilated cardiomyopathy (DCM). METHODS: We studied consecutive 179 DCM patients (Age 61±15 years, 121 males, LV ejection fraction (LVEF) 33±9%, NYHA class I: n= 0; II: n=71; III: n=107; IV: n=1) who underwent CMR and echocardiography with conventional assessment including LV end-diastolic and end-systolic volume (LVEDV, LVESV), LVEF and mitral regurgitation grade (MR), and with 2DST analysis of GLS. Brain natriuretic peptide (BNP) was measured. Outcome was assessed according to death and hospitalization with heart failure in the follow-up period for 3.8±2.5 years. RESULTS: There were 7 cardiac deaths and 40 HF hospitalizations in the follow-up period. Univariate Cox proportional hazard regression analysis showed NYHA class, systolic blood pressure, diastolic blood pressure, BNP, LVEDV, LVESV, LVEF, MR, GLS and positive LGE were significantly associated with outcome. Multivariate Cox proportional hazards regression analysis revealed GLS and positive LGE (p<0.05 for both) were independent predictors of outcome. Dividing all 179 patients into 4 groups with the median of GLS (-8.3%) and the presence or absence of LGE, Kaplan-Meier analysis showed worse GLS predicted adverse events in patients with and without LGE (p<0.05 for both). GLS and LGE provide additional benefit over conventional parameters (Age, NYHA class, LVEF and BNP). CONCLUSIONS: Risk stratification with LGE and GLS is useful to predict long-term outcome in DCM patients. These 2 markers provide incremental prognostic value to conventional HF markers.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Holzknecht ◽  
M Reindl ◽  
C Tiller ◽  
I Lechner ◽  
T Hornung ◽  
...  

Abstract Background Left ventricular ejection fraction (LVEF) is the parameter of choice for left ventricular (LV) function assessment and risk stratification of patients with ST-elevation myocardial infarction (STEMI); however, its prognostic value is limited. Other measures of LV function such as global longitudinal strain (GLS) and mitral annular plane systolic excursion (MAPSE) might provide additional prognostic information post-STEMI. However, comprehensive investigations comparing these parameters in terms of prediction of hard clinical events following STEMI are lacking so far. Purpose We aimed to investigate the comparative prognostic value of LVEF, MAPSE and GLS by cardiac magnetic resonance (CMR) imaging in the acute stage post-STEMI for the occurrence of major adverse cardiac events (MACE). Methods This observational study included 407 consecutive acute STEMI patients treated with primary percutaneous coronary intervention (PCI). Comprehensive CMR investigations were performed 3 [interquartile range (IQR): 2–4] days after PCI to determine LVEF, GLS and MAPSE as well as myocardial infarct characteristics. Primary endpoint was the occurrence of MACE defined as composite of death, re-infarction and congestive heart failure. Results During a follow-up of 21 [IQR: 12–50] months, 40 (10%) patients experienced MACE. LVEF (p=0.005), MAPSE (p=0.001) and GLS (p&lt;0.001) were significantly related to MACE. GLS showed the highest prognostic value with an area under the curve (AUC) of 0.71 (95% CI 0.63–0.79; p&lt;0.001) compared to MAPSE (AUC: 0.67, 95% CI 0.58–0.75; p=0.001) and LVEF (AUC: 0.64, 95% CI 0.54–0.73; p=0.005). After multivariable analysis, GLS emerged as sole independent predictor of MACE (HR: 1.22, 95% CI 1.11–1.35; p&lt;0.001). Of note, GLS remained associated with MACE (p&lt;0.001) even after adjustment for infarct size and microvascular obstruction. Conclusion CMR-derived GLS emerged as strong and independent predictor of MACE after acute STEMI with additive prognostic validity to LVEF and parameters of myocardial damage. Funding Acknowledgement Type of funding source: None


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Saikrishna Ananthapadmanabhan ◽  
Giau Vo ◽  
Tuan Nguyen ◽  
Hany Dimitri ◽  
James Otton

Abstract Background Cardiac magnetic resonance feature tracking (CMR-FT) and speckle tracking echocardiography (STE) are well-established strain imaging modalities. Multilayer strain measurement permits independent assessment of endocardial and epicardial strain. This novel and layer specific approach to evaluating myocardial deformation parameters may provide greater insight into cardiac contractility when compared to whole-layer strain analysis. The aim of this study is to validate CMR-FT as a tool for multilayer strain analysis by providing a direct comparison between multilayer global longitudinal strain (GLS) values between CMR-FT and STE. Methods We studied 100 patients who had an acute myocardial infarction (AMI), who underwent CMR imaging and echocardiogram at baseline and follow-up (48 ± 13 days). Dedicated tissue tracking software was used to analyse single- and multi-layer GLS values for CMR-FT and STE. Results Correlation coefficients for CMR-FT and STE were 0.685, 0.687, and 0.660 for endocardial, epicardial, and whole-layer GLS respectively (all p < 0.001). Bland Altman analysis showed good inter-modality agreement with minimal bias. The absolute limits of agreement in our study were 6.4, 5.9, and 5.5 for endocardial, whole-layer, and epicardial GLS respectively. Absolute biases were 1.79, 0.80, and 0.98 respectively. Intraclass correlation coefficient (ICC) values showed moderate agreement with values of 0.626, 0.632, and 0.671 respectively (all p < 0.001). Conclusion There is good inter-modality agreement between CMR-FT and STE for whole-layer, endocardial, and epicardial GLS, and although values should not be used interchangeably our study demonstrates that CMR-FT is a viable imaging modality for multilayer strain


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
K Kupczynska ◽  
D Miskowiec ◽  
B Michalski ◽  
L Szyda ◽  
K Wierzbowska-Drabik ◽  
...  

Abstract Background Atrial fibrillation (AF) impairs mechanical function of the heart, especially atria and restoration of sinus rhythm (SR) leads to improvement of mechanics. The predicting role of changes in strain parameters for AF recurrence is not established yet. Purpose To analyse changes in left atrial (LA) and left ventricular (LV) mechanical function after conversion to SR and their prognostic values for AF recurrence during 24 months follow-up. Methods Prospective study involved 59 patients after successful electrical cardioversion (EC) because of nonvalvular AF (mean age 65±4 years, 47% female). Speckle tracking analysis (STE) was applied to calculate longitudinal strain of LV and LA before EC and within 24 hours after restoration of SR and additionally total left heart strain (TS) defined as a sum of absolute peak LV and LA strain. We calculated change in strain between AF and SR analyses expressed as delta (Δ). During follow-up we noticed AF recurrence in 42 (71%) patients, most of them (93%) during 1st year after EC. Median time of AF recurrence was 3 months. Results We noticed significant immediate post-EC improvement in peak LA longitudinal strain (PALS) and LV global longitudinal strain (LVGLS) (table). Unlike CHA2DS2-VASc score, strain parameters were predictors of AF recurrence. Every 1% increment in ΔLVGLS was related with 13% increase in AF recurrence risk (p=0.02) and every 1% increment in ΔPALS and ΔTS were related with 9% decrease in AF recurrence risk (p=0.007 and p=0.0014, respectively). Multivariate analysis revealed ΔTS as a strongest predictor with 9% decrease in AF risk per every 1% increment. The criterion of ΔTS ≤7.5% allows to predict AF recurrence with 81% sensitivity and 63% specificity. Conclusions Speckle tracking measurements are able to detect early mechanical changes in LA even within 24 hours of SR and these absolute changes in LVGLS as well as PALS can predict AF recurrence, with optimal stratification by novel parameter - TS. Funding Acknowledgement Type of funding source: None


Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 562
Author(s):  
Rima Šileikienė ◽  
Karolina Adamonytė ◽  
Aristida Ziutelienė ◽  
Eglė Ramanauskienė ◽  
Jolanta Justina Vaškelytė

Background and objectives: Childhood obesity has reached epidemic levels in the world. Obesity in children is defined as a body mass index (BMI) equal to or above the 95th percentile for age and sex. The aim of this study was to determine early changes in cardiac structure and function in obese children by comparing them with their nonobese peers, using echocardiography methods. Materials and methods: The study enrolled 35 obese and 37 age-matched nonobese children. Standardized 2-dimensional (2D), pulsed wave tissue Doppler, and 2D speckle tracking echocardiography were performed. The z-score BMI and lipid metabolism were assessed in all children. Results: Obese children (aged 13.51 ± 2.15 years; 20 boys; BMI z-score of 0.88 ± 0.63) were characterized by enlarged ventricular and atrial volumes, a thicker left ventricular posterior wall, and increased left ventricular mass. Decreased LV and RV systolic and diastolic function was found in obese children. Atrial peak negative (contraction) strain (−2.05% ± 2.17% vs. −4.87% ± 2.97%, p < 0.001), LV and RV global longitudinal strain (−13.3% ± 2.88% vs. −16.87% ± 3.39%; −12.51% ± 10.09% vs. −21.51% ± 7.42%, p < 0.001), and LV global circumferential strain (−17.0 ± 2.7% vs. −19.5 ± 2.9%, p < 0.001) were reduced in obese children. LV torsion (17.94° ± 2.07° vs. 12.45° ± 3.94°, p < 0.001) and normalized torsion (2.49 ± 0.4°/cm vs. 1.86 ± 0.61°/cm, p = 0.001) were greater in obese than nonobese children. A significant inverse correlation was found between LV and RV global longitudinal strain and BMI (r = −0.526, p < 0.01; r = −0.434, p < 0.01) and total cholesterol (r = −0.417, p < 0.01). Multivariate analysis revealed that the BMI z-score was independently related to LV and RV global longitudinal strain as well as LV circumferential and radial strain. Conclusion: 2D speckle tracking echocardiography is beneficial in the early detection of regional LV systolic and diastolic dysfunctions, with preserved ejection fraction as well as additional RV and atrial involvement, in obese children. Obesity may negatively influence atrial and ventricular function, as measured by 2D speckle tracking echocardiography. Obese children, though they are apparently healthy, may have subclinical myocardial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document