Determination of Injection Ratio of Liquid-Gas Injection Apparatuses

Author(s):  
E. A. Girba ◽  
O. N. Korableva
Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4041
Author(s):  
Yuanxiang Lu ◽  
Sihan Liu ◽  
Xinru Zhang ◽  
Zeyi Jiang ◽  
Dianyu E

Voids that are formed by gas injection in a packed bed play an important role in metallurgical and chemical furnaces. Herein, two-phase gas–solid flow in a two-dimensional packed bed during blast injection was simulated numerically. The results indicate that the void stability was dynamic, and the void shape and size fluctuated within a certain range. To determine the void morphology quantitatively, a probabilistic method was proposed. By statistically analyzing the white probability of each pixel in binary images at multiple times, the void boundaries that correspond to different probability ranges were obtained. The boundary that was most appropriate with the simulation result was selected and defined as the well-matched void boundary. Based on this method, the morphologies of voids that formed at different gas velocities were simulated and compared. The method can help us to express the morphological characteristics of the dynamically stable voids in a numerical simulation.


Author(s):  
G Zhao

Diesel/natural gas dual fuel engine is acquiring more and more attention due to its potential to reduce NOX and soot emission simultaneously. Micro-pilot-induced diesel ignition natural gas engine is a popular manner to further improve the emission reduction capability of dual fuel engine. A six cylinder, four stroke, commonrail diesel engine is converted into dual fuel engine. Natural gas is injected into the intake manifold after the throttle. Five gas injection valves are used to control natural gas flow rate. Based to the established fuel supply system, a dual fuel control system is developed by using MS9S12XEP100 MCU. Voltage boosting circuit, fuel injector driving circuit, gas injection valve driving circuit and MeUn driving circuit are integrated on the platform of MCU hardware. Two ECU is connected to each other by CAN bus and several I/O ports to fulfil the fuel injection functional requirement. A software framework involves gas injection timing synchronization, fuel mode managing, multi-time injection. A MAP based fresh air mass flow rate and intake charge efficiency model is integrated in the MCU to calculate the fresh air quality in cylinder. The last part is performance optimization research at low load. Ignition diesel is divided into two stages, and the first injection timing, first injection ratio and injection pressure are used as controllable parameter to reduce NOX and HC emission. Experimental result reveal that by dividing ignition injection into two stage and advancing first injection to 60°CA BTDC CH4 emission can be reduced by 77% while NOX remains unchanged. Increasing the first injection ratio and injection pressure can also reduce THC emission. If injection pressure is higher than 75MPa, the effect of HC reduction effect is not that obvious. Experimental results shows that developed control system can accomplish the functional requirements of dual fuel engine management. Emission test results demonstrate that IMO TierII can be satisfied at diesel mode. DF mode emission performance can meet the requirement of IMO TierIII. Furthermore, as the first domestic product dual fuel dedicated control system, which has passed through the CCS authentication in China, the engine emission level can meet the current and upcoming China’s emission standard on non-road engine on the premise of guaranteeing engine power and economy.


2020 ◽  
Vol 143 (8) ◽  
Author(s):  
Peng Wang ◽  
Fenglan Zhao ◽  
Shijun Huang ◽  
Meng Zhang ◽  
Hairu Feng ◽  
...  

Abstract Excessive water production is a common matter that seriously affects production efficiency during the development of edge-water fault-block reservoirs. Gas huff-n-puff is an effective water shutoff technology that has the characteristics of small injection volume, no interwell connectivity impact, and minor gas channeling. However, gas injection can destroy the stability of the asphaltene to induce asphaltene deposition. In this article, the laboratory experiment had been conducted to investigate the effect of injection ratio and injection sequence on oil increment and water cut control for gas mixture huff-n-puff. Experimental results indicated that the effect of N2 huff-n-puff on water cut control was the most obvious, while CO2 huff-n-puff had the best performance on oil increment. Oil increment and water cut control of gas mixture huff-n-puff with CO2 injected in advance were obviously better than that of N2 injection preferentially. Subsequently, PVTsim Nova was utilized to investigate whether reducing CO2 injection volume can inhibit asphaltene deposition and predict the possibility of asphaltene deposition at reservoir conditions. Simulation results demonstrated that the asphaltenes were easily deposited with CO2 injection while N2 injection will be unlikely to induce asphaltene deposition. Asphaltene deposition pressure envelope can qualitatively analyze the possibility of asphaltene deposition and provide a reference for screening the appropriate gas injection ratio based on giving full play to the synergistic effect of CO2 and N2. In this study, 7:3 is selected as the optimum injection ratio considering the synergistic effect and the possibility of asphaltene deposition.


1997 ◽  
Author(s):  
F.G. Javadpour ◽  
M. Jamlalohmadi ◽  
S.R. Shadizadeh

Author(s):  
Saman Jaferi ◽  
Siavash Ashoori ◽  
Ghassem Alaskari MK

Gas miscibility injection is one of the most effective ways to increase oil extraction. The Minimum miscibility pressure is an important parameter in the miscibility gas injection processes, which is very important for determining the type of injection gas and the design of injection facilities.1 In the industry, the minimum miscibility pressure is usually measured by slim tube, which is a relatively costly and time-consuming test, and may sometimes be counterproductive due to its specific problems, in spite of the high cost and time consuming costs. In this study, using the eclipse 300 simulator, the minimum miscibility pressure was calculated for 11 oil reservoirs with different injectable gases in the process of gas miscibility injection after simulation and compared with the experimental results of these 11 reservoirs and by calculating error percentage, the applicability of this method has been investigated.


Author(s):  
F. K. Tsou ◽  
L. T. Smith ◽  
S. J. Chen

In order to investigate the unsteady effect on transition in film cooling, an 11-m long Ludwieg Tube, consisting of a test section placed between the high pressure and low pressure sections of a shock tube, has been constructed. With this device, a controlled unsteady, low subsonic flow lasting for a period of several milliseconds is obtained. The transition Reynolds Number is determined from the output of thin film heat flux transducers having a response time of a fraction of a microsecond. The results indicate that, in the case of flow without gas injection into the boundary layer, the transition Reynolds Number is one order of magnitude smaller than the critical Reynolds Number for steady wedge flow with the same pressure gradient. With injection, the transition Reynolds Number is small near the injection slot; far downstream, it increases asymptotically to the value for flow without injection.


Sign in / Sign up

Export Citation Format

Share Document