scholarly journals On Apparent Activation Energy of Structure Sensitive Heterogeneous Catalytic Reactions

2019 ◽  
Vol 149 (6) ◽  
pp. 1455-1463 ◽  
Author(s):  
Dmitry Yu. Murzin
2019 ◽  
Vol 150 (6) ◽  
pp. 1561-1570
Author(s):  
Dmitry Yu. Murzin

Abstract Analysis of apparent activation energy is presented for different heterogeneous catalytic reactions with parallel reaction routes. In the case of kinetic coupling between catalytic cycles the activation energy in a particular route depends not only on the activation energies of the elementary steps comprising this route, but also on the frequency of the steps in a parallel route. Expressions were derived for coupling between routes through irreversible adsorption of the substrate, quasi-equilibrated binding as well as different substrate adsorption modes. Theoretical analysis of the apparent activation energy was extended for the reaction network with two routes possessing mechanistically different rate determining steps (i.e. monomolecular vs bimolecular). For structure sensitive reactions an expression for the apparent activation energy for parallel reactions was developed for cases with a continuous distribution of active centers and a cubo-octahedral representation of the metal clusters. A comparison between the theoretical analysis and experimental data on transformations of furfural to furfuryl alcohol and furan on ruthenium clusters shows applicability of the developed theoretical framework. Graphic Abstract


ChemInform ◽  
2011 ◽  
Vol 42 (8) ◽  
pp. no-no
Author(s):  
C. K. Kajdas ◽  
A. Kulczycki ◽  
K. J. Kurzydlowski ◽  
G. J. Molina

Catalysts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 306 ◽  
Author(s):  
M. Sherif El-Eskandarany ◽  
Mohammad Banyan ◽  
Fahad Al-Ajmi

Due to its availability and high storage capacity, Mg is an ideal material in hydrogen storage applications. In practice, doping Mg/MgH2 with catalyst(s) is necessary in enhancing the de/rehydrogenation kinetics and minimizing both of decomposition temperature and its related apparent activation energy. The present study proposed a new heterogeneous catalytic agent that consisted of intermetallic compound (ZrNi5)/metal oxide (Nb2O5) binary system for using with different concentrations (5−30 wt%) to improve MgH2. Doping MgH2 powders with low concentration (5, 7, 10 wt%) of this new catalytic system led to superior absorption/desorption kinetics, being indexed by the short time that is required to absorb/desorb 4.2−5.6 wt% H2 within 200 s to 300 s. Increasing the doping dose to 15–30 wt% led to better kinetic effect but a significant decrease in the hydrogen storage capacity was seen. The dependent of apparent activation energy and decomposition temperature of MgH2 on the concentration of ZrNi5/Nb2O5 has been investigated. They tended to be linearly decreased with increasing the catalyst concentrations. The results elucidated the crucial role of catalytic additives on the disintegration of MgH2 into ultrafine powders (196 nm to 364 nm diameter). The formation of such nanoparticles enhance the hydrogen diffusion and shorten the time that is required for the hydrogenation/dehydrogenation process. Moreover, this refractory catalytic system acted as a grain growth inhibitor, in which Mg/MgH2 powders maintained their submicron level during the cycle-life-test that was extended to 100 h at 200 °C.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Guanghao Cheng ◽  
Gurong Shen ◽  
Jun Wang ◽  
Yunhao Wang ◽  
Weibo Zhang ◽  
...  

The present work reports the effects of γ-, θ-phase of alumina on the hydrothermal stability and the properties of non- and strongly-interacting Rh species of the Rh/Al2O3 catalysts. Comparing to γ-Al2O3, θ-Al2O3 can not only reduce the amount of occluded Rh but also better stabilize Rh during hydrothermal aging treatment. When the aging time was prolonged to 70 h, all the non-interacting Rh was transformed into strongly-interacting Rh and occluded Rh. The XPS results indicated that non- and strongly-interacting Rh might exist in the form of Rh/Rh3+ and Rh4+, respectively. CO-NO reaction was chosen as a probe reaction to research more information about non- and strongly-interacting Rh. The two Rh species had similar apparent activation energy (Eapp) of 170 kJ/mol, which indicated that non- and strongly-interacting Rh follow the same reaction path. The non-interacting Rh was removed from aged samples by the acid-treated method, and obtained results showed that only 2.5% and 4.0% non-interacting Rh was maintained in aged Rh/γ-Al2O3 and Rh/θ-Al2O3.


2020 ◽  
Vol 92 (2) ◽  
pp. 20601
Author(s):  
Abdelaziz Labrag ◽  
Mustapha Bghour ◽  
Ahmed Abou El Hassan ◽  
Habiba El Hamidi ◽  
Ahmed Taoufik ◽  
...  

It is reported in this paper on the thermally assisted flux flow in epitaxial YBa2Cu3O7-δ deposited by Laser ablation method on the SrTiO3 substrate. The resistivity measurements ρ (T, B) of the sample under various values of the magnetic field up to 14T in directions B∥ab-plane and B∥c-axis with a dc weak transport current density were investigated in order to determine the activation energy and then understand the vortex dynamic phenomena and therefore deduce the vortex phase diagram of this material. The apparent activation energy U0 (B) calculated using an Arrhenius relation. The measured results of the resistivity were then adjusted to the modified thermally assisted flux flow model in order to account for the temperature-field dependence of the activation energy U (T, B). The obtained values from the thermally assisted activation energy, exhibit a behavior similar to the one showed with the Arrhenius model, albeit larger than the apparent activation energy with ∼1.5 order on magnitude for both cases of the magnetic field directions. The vortex glass model was also used to obtain the vortex-glass transition temperature from the linear fitting of [d ln ρ/dT ] −1 plots. In the course of this work thanks to the resistivity measurements the upper critical magnetic field Hc2 (T), the irreversibility line Hirr (T) and the crossover field HCrossOver (T) were located. These three parameters allowed us to establish a phase diagram of the studied material where limits of each vortex phase are sketched in order to optimize its applicability as a practical high temperature superconductor used for diverse purposes.


2021 ◽  
Vol 10 (1) ◽  
pp. 011-020
Author(s):  
Luyao Kou ◽  
Junjing Tang ◽  
Tu Hu ◽  
Baocheng Zhou ◽  
Li Yang

Abstract Generally, adding a certain amount of an additive to pulverized coal can promote its combustion performance. In this paper, the effect of CaO on the combustion characteristics and kinetic behavior of semi-coke was studied by thermogravimetric (TG) analysis. The results show that adding proper amount of CaO can reduce the ignition temperature of semi-coke and increase the combustion rate of semi-coke; with the increase in CaO content, the combustion rate of semi-coke increases first and then decreases, and the results of TG analysis showed that optimal addition amount of CaO is 2 wt%. The apparent activation energy of CaO with different addition amounts of CaO was calculated by Coats–Redfern integration method. The apparent activation energy of semi-coke in the combustion reaction increases first and then decreases with the increase in CaO addition. The apparent activation energies of different samples at different conversion rates were calculated by Flynn–Wall–Ozawa integral method. It was found that the apparent activation energies of semi-coke during combustion reaction decreased with the increase in conversion.


Sign in / Sign up

Export Citation Format

Share Document