scholarly journals Moisture induced straining of the cellulosic microfibril

Cellulose ◽  
2021 ◽  
Author(s):  
Lennart Salmén ◽  
Jasna S. Stevanic ◽  
Claes Holmqvist ◽  
Shun Yu

Abstract Moisture absorption in the cell wall structure of wood is well known to induce considerable swelling of the wood exerting high expansion forces. This swelling is mainly induced by the sorptive action of the hydroxyl groups of the carbohydrate wood polymers; cellulose and hemicelluloses. On the ultrastructural level, there are, however, still questions with regard to the detailed deformations induced by this moisture absorption. Here, FTIR spectroscopy and synchrotron-radiation-based X-ray diffraction were used on paper samples to study the deformation of the cellulose crystals as a consequence of moisture absorption and desorption. Both techniques revealed that the moisture absorption resulted in a transverse contraction of the cellulose crystals accompanied by a somewhat smaller elongation in the cellulose chain direction. The deformations were found to be a direct response to the increased moisture content and were also found to be reversible during moisture desorption. It is hypothesised that these deformations are a consequence of the swelling forces created by the combined longitudinal and lateral expansions of the non-crystalline cellulose molecules and the glucomannan hemicellulose aligned along the cellulose crystals. These forces will impose a lateral contraction of the cellulose crystals, as well as a longitudinal extension of it. Graphic abstract

2013 ◽  
Vol 829 ◽  
pp. 616-621 ◽  
Author(s):  
Ramin Khajavi ◽  
Amin Meftahi ◽  
Somayeh Alibakhshi ◽  
Leila Samih

In this study the nanobiocomposite of Microbial cellulose/Cotton/Silver is introduced as a modern wound dressing. Microbial cellulose was synthesized in situ on cotton gauze. The static medium culture (Hestrin & Scharm) and Acetobacter Xylinum used for microbial cellulose synthesis and 6 days formed layers used for experiments. Half of 6 days samples were reverse after 3 days in order to form double coated gauze. One or two coated sides specimens were deactivated purified and dipped in a 500ppm nanosilver concentration. Specimens were analyzed by X-ray diffraction method, Fourier transform infra-red spectroscopy, Scanning electron microscopy and transmission electron microscopy. Their water and moisture absorption determined and their antibacterial efficiency evaluated by AATCC 100 antibacterial test method. Results showed about 30% increase in water absorption with less than 8% moisture regain. Microscopic images showed a proper distribution of nanosilver without agglomerations at surface and inside nanobiocomposite which caused improved antimicrobial efficiency. The obtained results indicated that nanocomposite (double coated gauze) has high potential for applying as a modern wound dressing.


2014 ◽  
Vol 70 (a1) ◽  
pp. C554-C554 ◽  
Author(s):  
Purnendu Nandy ◽  
V. Pedireddi

Molecular adducts of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (1) with aza-donors like 4,4'-bipyridine (a), 1,2-bis(4-pyridyl)ethane (b), trans-1,2-bis(4-pyridyl)ethylene (c), 4,4'-trimethylene-dipyridine (d), phenazine (e), 1,10-phenanthroline (f), 1,7-phenanthroline (g) and 4,7-phenanthroline (h) have been prepared. All the molecular complexes are crystallized along with the solvent of crystallization, except in the complex with the aza-donor b. Detailed structural analysis of the obtained complexes has been carried out by single crystal X-ray diffraction. The three dimensional structures of the molecular adducts are facilitated by directional hydrogen bonding features of hydroxyl groups with aza donors as well as solvent molecules, leading to the formation of different types of supramolecular architectures like sheets, tapes, host-guest assembly etc. For example, in the complex of 1 and aza donor a, which crystallizes as a hydrate, the porphyrin molecules interact with water and 4,4'-bipyridine through O-H...O and O-H...N hydrogen bonds, which leads to the formation of molecular sheets in two dimensional arrangement. An important noteworthy observation is that the molecular complexes are crystalline even after removal of the solvents by heating, as characterized by thermogravimetric analysis (TGA) and powder X-ray diffraction (PXRD). Further, all the complexes are found to be fluorescence sensitive, perhaps due to the porphyrin molecules.


2015 ◽  
Vol 815 ◽  
pp. 217-221
Author(s):  
Ling Li Xu ◽  
Xing Ling Shi ◽  
Qing Liang Wang

nanocrystalline cellulose (NCC) was prepared from micro-crystalline cellulose (MCC) by strong acid hydrolysis. The characteristics of such particle were studied by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. Electro-rheological fluids (ERF) were prepared by dispersing NCC and MCC in methyl-silicone oil, and their ER effects were measured. Experimental results indicated that NCC ERF exhibited a remarkable ER effect. The highest static shearing stress of NCC ERF (3.5 g/ml) was 5.1 kPa at the room temperature under a 4 .2 kV/mm electric field, increased about 5.5 times compared to MCC ERF, and sedimentation of NCC ERF was not observed even after 60 days.


1990 ◽  
Vol 45 (11) ◽  
pp. 1508-1512 ◽  
Author(s):  
Michel Mégnamisi-Bélombé ◽  
Bernhard Nuber

The ammonium salts of the complex anions trans-diiodobis(ethanedial-dioximato)-cobaltate(III), [Col2(GH)2]-, and trans-diiodobis(ethanedial-dioximato)rhodate(III), [RhI2(GH)2]- (GH- = ethanedial dioximate or glyoximate), have been synthesized and their structures determined from single crystal X-ray diffraction data at room temperature. The crystals of the two salts are monoclinic, space group C2/c. NH4[CoI2(GH)2] (I) crystallizes as dark-brown prisms with a greenish reflectance; its crystal data are: C4H10Col2N5O4, Mr = 504.90; a = 8.910(6), b = 11.700(9), c = 11.691(6) Å; β = 93.55(5)°; V = 1216.4 Å3; Z = 4; Dc = 2.78 Mg m-3. NH4[RhI2(GH)2] (II) crystallizes as yellow-brown blocks with crystal data: C4H10I2N5O4Rh, Mr = 548.88; a = 9.038(4), b = 11.949(5), c = 11.770(3) Å; β = 95.54(3)°; V = 1265.16 A3; Z = 4; Dc = 2.87 Mg m-3. The two structures were refined to a final RW = 0.045 for 1209 observed independent reflections and 95 parameters for I, and to a final RW = 0.040 for 1922 observed independent reflections and 87 parameters for II. The coordination geometry around Co or Rh in the anionic complexes is a distorted (4 + 2) octahedron of four equatorial chelating N atoms and two apical iodides. The H atoms of the hydroxyl groups are involved, as usual, in intramolecular O—H—O bridges with uniform Ο···Ο separations of 2.582 Å for I, and 2.713 Å for II. The rectilinear I—Co—I or I—Rh—I triads form “infinite” zigzag chains extending parallel to the ab plane, with a weak I—I contact of 3.988 Å for I, and 4.010 Å for II.


The cell-wall structure of the red alga Rhodymenia palmata has been examined by the methods of X -ray diffraction analysis and electron microscopy, including ultra-thin sectioning. The cell wall is shown to consist of numerous lamellae each of which is made up of unoriented, crystalline microfibrils embedded in an amorphous matrix of other cell-wall constituents. The material can be stretched reversibly up to 100% when wet, and the stretching induces orientation of the microfibrils. The ‘∝ cellulose' fraction, which accounts for only 2 to 7 % of the original dry weight, was isolated chemically and was analyzed by means of hydrolysis and paper chromatographic separation of the resulting sugars, and it was found to be composed of approximately equal quantities of glucose and xylose residues. Chemical treatment of the cell wall was found to cause considerable variations in the X -ray diagrams, which are discussed. It is concluded that the microfibrils contain both glucose and xylose residues in approximately equal proportions and that chemical treatment in this case causes changes in crystallinity of the structural component of the wall. The importance of these findings for the meaning of the term cellulose is discussed. The X -ray diagram of older fronds was found to be complicated by the occurrence of extra rings due to the presence of floridean starch, and the highly elastic properties of the thallus enabled the diagrams of the starch and the cell wall to be separated.


2014 ◽  
Vol 979 ◽  
pp. 315-318 ◽  
Author(s):  
W. Siriprom ◽  
K. Chantarasunthon ◽  
K. Teanchai

This work aims at characterizing the thermal and physical properties of chitosan. The samples were evaluated for potentiality to use as raw material for biodegradable films raw material. Their thermal and physical properties have been also discussed in detail which Fourier Transform Infrared Spectroscopy (FTIR), Thermo-Gravimetric Analysis (TGA), Energy Dispersive X-Ray Fluorescence (EDXRF) and X-Ray Diffraction (XRD), respectively. The result of the XRD pattern indicated the sample has amorphous-crystalline structure and FTIR results confirmed the formation of intermolecular hydrogen bonding between the amino and hydroxyl groups of the sample. In good agreement between the EDXRF and TGA results, noticed that the removal of moisture and volatile material.


1997 ◽  
Vol 93 (1) ◽  
pp. 199-202 ◽  
Author(s):  
Karen J. Edler ◽  
Philip A. Reynolds ◽  
John W. White ◽  
David Cookson

2014 ◽  
Vol 895 ◽  
pp. 111-115 ◽  
Author(s):  
Hairul A.A. Hamid ◽  
Rauzah Hashim ◽  
John M. Seddon ◽  
Nicholas J. Brooks

The phase behaviour and self-assembly structural parameters of a pair of monosaccharide and disaccharide Guerbet branched-chain β-D-glycosides, namely 2-octyldodecyl β-D-glucoside (β-Glc-C12C8) and 2-octyldodecyl β-D-maltoside (β-Mal-C12C8), have been studied by means of optical polarizing microscopy (OPM) and small-angle X-ray diffraction at room temperature (25°C). These compounds are sugar-based glycolipid surfactants having a total chain length of C20, and differ based on the increasing number of hydroxyl groups of the sugar headgroup (glucose and maltose). The repeat spacings obtained by X-ray diffraction as a function of water content have been used to determine the limiting hydration for the two glycosides. At room temperature, β-Glc-C12C8 and β-Mal-C12C8 have limiting hydrations of 22 wt% and 25 wt%, corresponding to 8 10 and 10 12 water molecules per glycoside, respectively. At all water contents between 5 and 29 wt % water, these compounds adopt inverse hexagonal (HII) or fluid lamellar (Lα) phases. The structural parameters of these phases have been determined from the diffraction data, from the X-ray repeat spacings, densities and concentration of the glycosides.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4013 ◽  
Author(s):  
Artur Bukowczan ◽  
Edyta Hebda ◽  
Maciej Czajkowski ◽  
Krzysztof Pielichowski

In this work, we report for the first time on the influence of polyhedral oligomericsilsesquioxanes (POSS) on the structure and properties of liquid crystalline polyurethane (LCPU). LCPU/POSS hybrids were synthesized via a two-step method. In the first step, 4,4′-methylenephenyl diisocyanate (MDI) and polytetramethylene ether glycol (PTMG) reacted with functionalized trisilanolphenyl POSS (TSP-POSS) bearing three hydroxyl groups. In the second step, the growing chain was extended with 4,4′-bis(hydroxyhexoxy)biphenyl (BHHBP). FTIR measurements confirmed the chemical bonding between the POSS and LCPU matrix and showed the influence of the silsesquioxane modification on the intensity of hydrogen bonds. The DSC and POM techniques confirmed the formation of liquid crystalline phases. The incorporation of silsesquixanes into the LC matrix leads to higher melting and isotropization temperatures along with the broadening phase transition effect. Scanning electron microscopy showed a good distribution of POSS moieties, both in the bulk and on the surface of the liquid crystalline PU matrix, whereby wide-angle X-ray diffraction (WAXD) patterns revealed halos from both the liquid crystalline and unmodified polyurethane matrix. The stress at the breaking points for LCPU/POSS hybrids containing 50% and 60% of elastic segments is greater than the stress at the breaking point of the reference material (LCPU), what is due to good dispersion of POSS in less elastic matrix. Thermal properties of the LCPU/POSS materials obtained, determined by TGA, revealed that the char residue increased with the amount of POSS for 40% of elastic segments materials.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 587 ◽  
Author(s):  
Cheng ◽  
Xing ◽  
Bu ◽  
Zhang ◽  
Piao ◽  
...  

As a high-temperature sorbent, kaolinite undergoes the flash calcination process in the furnace resulting in the dehydroxylation and structural distortion, which are closely related to its heavy metal/alkali metal adsorption characteristics. We investigated the flash calcination of kaolinite by the experiments using a drop tube furnace and by the characterization of flash-calcined products using thermogravimetric-differential scanning calorimeter (TG-DSC), X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR)and nuclear magnetic resonance (NMR). There were three kinds of hydroxyl groups in kaolinite during flash calcination at 800–1300 °C, E-type (~50%, easy), D-type (~40%, difficult) and U-type (~10%, unable) according to the removal difficulty. The hydroxyl groups activation was believed to be the first step of the removal of E-type and D-type hydroxyl groups. The kinetics model of dehydroxylation groups at 900–1200 °C was established following Arrhenius equation with the activation energy of 140 kJ/mol and the pre-exponential factor of 1.32 × 106 s−1. At 800 °C, the removal of E-type hydroxyl groups resulted in the conversion of a part of VI-coordinated Al in kaolinite to V-coordinated Al and the production of meta-kaolinite. When the temperature rose up to 1200 °C, mullite was produced and a part of V-coordinated Al converted to IV-coordinated Al and VI-coordinated Al. Finally, the adsorption characteristics of kaolinite was discussed according to the results of dehydroxylation and structural distortion.


Sign in / Sign up

Export Citation Format

Share Document