scholarly journals Applications of cellulose-based agents for flocculation processes: a bibliometric analysis

Cellulose ◽  
2021 ◽  
Author(s):  
Alejandro Barrero-Fernández ◽  
Roberto Aguado ◽  
Ana Moral ◽  
Celeste Brindley ◽  
Menta Ballesteros

AbstractNot surprisingly, cellulose-based agents for wastewater treatments, and more precisely for coagulation-flocculation processes, raise growing interest, boosted not only by the high availability, functionality, renewability, and biodegradability of cellulose, but also by the outstanding performance of their derivatives. The analysis of 460 publications including review papers, research articles and book chapters, among others, reveals a multidisciplinary approach, where the fields Materials Science, Chemistry, Chemical Engineering and Environmental Science play a major role. In terms of institutions, some of the most relevant contributors are the Wuhan University, Zhejiang Sci-Tech University, Universidad Complutense de Madrid, to name a few. The most relevant journals were found to be Carbohydrate Polymers, International Journal of Applied Polymer Science and Cellulose. An analysis of 332 keywords allowed us to classify works into three major clusters (besides two minor ones): one mostly defined by cellulose and coagulation; a second one championed by flocculation and cellulose derivatives; and a third one including wastewater treatment and polysaccharides. While the evolution of the scientific production leaves little doubt about it, as depicted in this bibliometric study, this is the first work providing an in-depth assessment and classification of the literature on cellulose for particle aggregation purposes.

2020 ◽  
Vol 8 (36) ◽  
pp. 18464-18491
Author(s):  
Barbara Szczęśniak ◽  
Jenjira Phuriragpitikhon ◽  
Jerzy Choma ◽  
Mietek Jaroniec

This review presents advances, challenges and prospects in the area of biomass-derived carbons with ordered porosity addressed for scientists and engineers interested in materials science, chemical engineering, environmental science, and more.


Author(s):  
B.N. Chigarev

This study aims to reveal and analyze the landscape of China’s scientific publications in 2018–2020 on the subject “Energy Engineering and Power Technology” using bibliometric data from the Lens platform. Bibliometric data of 26,623 scholarly works that satisfy the query: “Filters: Year Published = (2018–); Publication Type = (journal article); Subject = (Energy Engineering and Power Technology); Institution Country/Region = (China)” were used to analyze their main topics disclosed by Fields of Study and Subject; the leading contributors to these R&D activities were also detected. Chinese Academy of Sciences, China University of Petroleum, Tsinghua University, Xi’an Jiaotong University, China University of Mining and Technology are the leading institutions in the subject. Most research works were funded by National Natural Science Foundation of China. China carries out its research not only in conjunction with the leading economies: United States, United Kingdom, Australia and Canada, but also with the developing countries: Pakistan, Iran, Saudi Arabia and Viet Nam. Materials science, Chemical engineering, Computer science, Chemistry, Catalysis, Environmental science are the top Fields of Study. Analysis of co-occurrence of Fields of Study allowed to identify 5 thematic clusters: 1. Thermal efficiency and environmental science; 2. Materials science for energy storage and hydrogen production; 3. Catalysis and pyrolysis for better fossil fuels; 4. Computer science and control theory for renewable energy; 5. Petroleum engineering for new fossil fuel resources and composite materials. The results of the work can serve as a reference material for scientists, developers and investors, so that they can understand the research landscape of the “Energy Engineering and Power Technology” subject.


Author(s):  
George K. Schweitzer ◽  
Lester L. Pesterfield

Most fields of science, applied science, engineering, and technology deal with solutions in water. This volume is a comprehensive treatment of the aqueous solution chemistry of all the elements. The information on each element is centered around an E-pH diagram which is a novel aid to understanding. The contents are especially pertinent to agriculture, analytical chemistry, biochemistry, biology, biomedical science and engineering, chemical engineering, geochemistry, inorganic chemistry, environmental science and engineering, food science, materials science, mining engineering, metallurgy, nuclear science and engineering, nutrition, plant science, safety, and toxicology.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3095
Author(s):  
Alírio E. Rodrigues ◽  
Idelfonso Nogueira ◽  
Rui P.V. Faria

In the last two decades, scientific methodologies for the prediction of the design, performance and classification of fragrance mixtures have been developed at the Laboratory of Separation and Reaction Engineering. This review intends to give an overview of such developments. It all started with the question: what do we smell? The Perfumery Ternary Diagram enables us to determine the dominant odor for each perfume composition. Evaporation and 1D diffusion model is analyzed based on vapor-liquid equilibrium and Fick’s law for diffusion giving access to perfume performance parameters. The effect of matrix and skin is addressed and the trail of perfumes analyzed. Classification of perfumes with the perfumery radar is discussed. The methodology is extended to flavor and taste engineering. Finally, future research directions are suggested.


2001 ◽  
Vol 684 ◽  
Author(s):  
Jane P. Chang

Recognizing that the traditional engineering education training is often inadequate in preparing the students for the challanges presented by this industry's dynamic environment and insufficient to meet the empoyer's criteria in hiring new engineers, a new curriculum on Semiconductor Manufacturing is instituted in the Chemical Engineering Department at UCLA to train the students in various scientific and technologica areas that are pertinenet to the microelectronics industries. This paper describes this new mutidisciplinary curriculum that provides knowledge and skills in semiconductor manufacturing through a series ofcourses that emphasize on the application of fundamenta engineeering disciplines in solid-state physics, materials science of semiconductors, and chemical processing. The curriculum comprises three major components:(1)a comprehensive course curriculum in semiconductor manufacturing; (2) a laboratory for hands-on training in semiconductor device fabrication; (3) design of experiments. The capstone laboratory course is designed to strengthen students’ training in “unit operatins” used in semicounductor manufacturing and allow them to practice engineering principles using the state-of-the-art experimental setup. It comprises the most comprehensive training(seven photolithographic steps and numero0us chemical processes)in fabricating and testing complementary metal-oxide-semiconductor (CMOS) devices. This curriculum is recentyaccredited by the Accreditation Board for Engineering and Technology(ABET).


2011 ◽  
Vol 26 (S2) ◽  
pp. 1573-1573
Author(s):  
V. Pais ◽  
D. Correia ◽  
F. Ramalho e Silva

BackgroundMedically unexplained physical symptoms (MUPS) can be defined as physical symptoms that have no currently known physical pathological cause. MUPS account for one in five new consultations in primary care and for one third of new patients when neurology consultations are considered.Patients with MUPS present significant distress and impaired function and their diagnosis is sometimes hard to establish. The classification of somatoform disorders has been found to be insufficiently useful for therapeutic and scientific purposes. Some authors suggest that new classifications should attend to clinical utility, defined as (1) the extent to which a diagnosis can help clinicians understand or conceptualize a disorder in their daily work; (2) the extent to which a diagnosis can help the clinician communicate useful information to others, including practitioners, family members, patients, and administrators; (3) the extent to which the presence of a disorder helps the clinician choose effective interventions, and (4) the extent to which a disorder can predict future clinical management needs.AimThis review aims to discuss the management of MUPS in mental health services, attending to the importance of a multidisciplinary approach.MethodsPubmed Medline search on MUPS and review of recent literature.DiscussionThe management of MUPS implies a multidisciplinary approach that can offer different solutions for different degrees of disorder severity and takes into account the perception of the patient about his own illness. New classifications of somatoform disorders that include comprehensible explanations about these symptoms could be helpful for patients and health professionals.


2020 ◽  
pp. 1-7
Author(s):  
Sumit Kumar Gupta ◽  

Nanotechnology is new frontiers of this century. The world is facing great challenges in meeting rising demands for basic commodities(e.g., food, water and energy), finished goods (e.g., cellphones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth’s global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. In recent years there has been a rapid increase in nanotechnology in the fields of medicine and more specifically in targeted drug delivery. Opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and hemistry. Smart delivery of nutrients, bio-separation of proteins, rapid sampling of biological and chemical contaminants, and nano encapsulation of nutraceuticals are some of the emerging topics of nanotechnology for food and agriculture. Nanotechnology is helping to considerably improve, even revolutionize, many technology and Industry sectors: information technology, energy, environmental science, medicine, homeland security, food safety, and transportation, among many others. Today’s nanotechnology harnesses current progress in chemistry, physics, materials science, and biotechnology to create novel materials that have unique properties because their structures are determined on the nanometer scale. This paper summarizes the various applications of nanotechnology in recent decades Nanotechnology is one of the leading scientific fields today since it combines knowledge from the fields of Physics, Chemistry, Biology, Medicine, Informatics, and Engineering. It is an emerging technological field with great potential to lead in great breakthroughs that can be applied in real life. Novel Nano and biomaterials, and Nano devices are fabricated and controlled by nanotechnology tools and techniques, which investigate and tune the properties, responses, and functions of living and non-living matter, at sizes below100 nm. The application and use of Nano materials in electronic and mechanical devices, in optical and magnetic components, quantum computing, tissue engineering, and other biotechnologies, with smallest features, widths well below 100 nm, are the economically most important parts of the nanotechnology nowadays and presumably in the near future. The number of Nano products is rapidly growing since more and more Nano engineered materials are reaching the global market the continuous revolution in nanotechnology will result in the fabrication of nanomaterial with properties and functionalities which are going to have positive changes in the lives of our citizens, be it in health, environment, electronics or any other field. In the energy generation challenge where the conventional fuel resources cannot remain the dominant energy source, taking into account the increasing consumption demand and the CO2 .Emissions alternative renewable energy sources based on new technologies have to be promoted. Innovative solar cell technologies that utilize nanostructured materials and composite systems such as organic photovoltaic offer great technological potential due to their attractive properties such as the potential of large-scale and low-cost roll-to-roll manufacturing processes


Antibiotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 102 ◽  
Author(s):  
Howard Ramirez-Malule

Clavulanic acid (CA), a potent inhibitor of the β-lactam, ase enzyme, is frequently co-formulated with a broad spectrum of antibiotics to treat infections caused by β-lactamase-producing pathogens. In order to evaluate the impact and the progress of CA studies in the last four decades, a bibliometric analysis of the global scientific production of CA was carried out. A total of 39,758 records in the field of CA were indexed in the Scopus database for a 43-year period of study (1975–2017). The results indicated that CA studies have grown, showing three phases (1975–1999, 2000–2003 and 2004–2017) based on records of publications; the results showed a sigmoidal profile. Medicine was the main subject area for CA studies, whereas biochemistry, genetics and molecular biology were areas of research for CA production by Streptomyces clavuligerus (S. clavuligerus). Nevertheless, chemical engineering (as a subject area) had the highest increase in the percentage of publications related to CA production by S. clavuligerus. The United States, France, the United Kingdom, Spain and Brazil were the leading countries in the scientific production of studies on both CA and CA related to S. clavuligerus. This analysis allowed the identification of the area of knowledge with the highest impact on CA studies, the top researchers and their geographic distribution, and also helped to highlight the existence of antibiotic-resistant bacteria as an emergent area in CA research.


Sign in / Sign up

Export Citation Format

Share Document