scholarly journals Study of Nanotechnology and Its Application

2020 ◽  
pp. 1-7
Author(s):  
Sumit Kumar Gupta ◽  

Nanotechnology is new frontiers of this century. The world is facing great challenges in meeting rising demands for basic commodities(e.g., food, water and energy), finished goods (e.g., cellphones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth’s global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. In recent years there has been a rapid increase in nanotechnology in the fields of medicine and more specifically in targeted drug delivery. Opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and hemistry. Smart delivery of nutrients, bio-separation of proteins, rapid sampling of biological and chemical contaminants, and nano encapsulation of nutraceuticals are some of the emerging topics of nanotechnology for food and agriculture. Nanotechnology is helping to considerably improve, even revolutionize, many technology and Industry sectors: information technology, energy, environmental science, medicine, homeland security, food safety, and transportation, among many others. Today’s nanotechnology harnesses current progress in chemistry, physics, materials science, and biotechnology to create novel materials that have unique properties because their structures are determined on the nanometer scale. This paper summarizes the various applications of nanotechnology in recent decades Nanotechnology is one of the leading scientific fields today since it combines knowledge from the fields of Physics, Chemistry, Biology, Medicine, Informatics, and Engineering. It is an emerging technological field with great potential to lead in great breakthroughs that can be applied in real life. Novel Nano and biomaterials, and Nano devices are fabricated and controlled by nanotechnology tools and techniques, which investigate and tune the properties, responses, and functions of living and non-living matter, at sizes below100 nm. The application and use of Nano materials in electronic and mechanical devices, in optical and magnetic components, quantum computing, tissue engineering, and other biotechnologies, with smallest features, widths well below 100 nm, are the economically most important parts of the nanotechnology nowadays and presumably in the near future. The number of Nano products is rapidly growing since more and more Nano engineered materials are reaching the global market the continuous revolution in nanotechnology will result in the fabrication of nanomaterial with properties and functionalities which are going to have positive changes in the lives of our citizens, be it in health, environment, electronics or any other field. In the energy generation challenge where the conventional fuel resources cannot remain the dominant energy source, taking into account the increasing consumption demand and the CO2 .Emissions alternative renewable energy sources based on new technologies have to be promoted. Innovative solar cell technologies that utilize nanostructured materials and composite systems such as organic photovoltaic offer great technological potential due to their attractive properties such as the potential of large-scale and low-cost roll-to-roll manufacturing processes

Author(s):  
Krzysztof Jurczuk ◽  
Marcin Czajkowski ◽  
Marek Kretowski

AbstractThis paper concerns the evolutionary induction of decision trees (DT) for large-scale data. Such a global approach is one of the alternatives to the top-down inducers. It searches for the tree structure and tests simultaneously and thus gives improvements in the prediction and size of resulting classifiers in many situations. However, it is the population-based and iterative approach that can be too computationally demanding to apply for big data mining directly. The paper demonstrates that this barrier can be overcome by smart distributed/parallel processing. Moreover, we ask the question whether the global approach can truly compete with the greedy systems for large-scale data. For this purpose, we propose a novel multi-GPU approach. It incorporates the knowledge of global DT induction and evolutionary algorithm parallelization together with efficient utilization of memory and computing GPU’s resources. The searches for the tree structure and tests are performed simultaneously on a CPU, while the fitness calculations are delegated to GPUs. Data-parallel decomposition strategy and CUDA framework are applied. Experimental validation is performed on both artificial and real-life datasets. In both cases, the obtained acceleration is very satisfactory. The solution is able to process even billions of instances in a few hours on a single workstation equipped with 4 GPUs. The impact of data characteristics (size and dimension) on convergence and speedup of the evolutionary search is also shown. When the number of GPUs grows, nearly linear scalability is observed what suggests that data size boundaries for evolutionary DT mining are fading.


Author(s):  
Gianluca Bardaro ◽  
Alessio Antonini ◽  
Enrico Motta

AbstractOver the last two decades, several deployments of robots for in-house assistance of older adults have been trialled. However, these solutions are mostly prototypes and remain unused in real-life scenarios. In this work, we review the historical and current landscape of the field, to try and understand why robots have yet to succeed as personal assistants in daily life. Our analysis focuses on two complementary aspects: the capabilities of the physical platform and the logic of the deployment. The former analysis shows regularities in hardware configurations and functionalities, leading to the definition of a set of six application-level capabilities (exploration, identification, remote control, communication, manipulation, and digital situatedness). The latter focuses on the impact of robots on the daily life of users and categorises the deployment of robots for healthcare interventions using three types of services: support, mitigation, and response. Our investigation reveals that the value of healthcare interventions is limited by a stagnation of functionalities and a disconnection between the robotic platform and the design of the intervention. To address this issue, we propose a novel co-design toolkit, which uses an ecological framework for robot interventions in the healthcare domain. Our approach connects robot capabilities with known geriatric factors, to create a holistic view encompassing both the physical platform and the logic of the deployment. As a case study-based validation, we discuss the use of the toolkit in the pre-design of the robotic platform for an pilot intervention, part of the EU large-scale pilot of the EU H2020 GATEKEEPER project.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 389-395 ◽  
Author(s):  
Ralph E.H. Sims

AbstractSome forms of renewable energy have long contributed to electricity generation, whereas others are just emerging. For example, large-scale hydropower is a mature technology generating about 16% of global electricity, and many smaller scale systems are also being installed worldwide. Future opportunities to improve the technology are limited but include upgrading of existing plants to gain greater performance efficiencies and reduced maintenance. Geothermal energy, widely used for power generation and direct heat applications, is also mature, but new technologies could improve plant designs, extend their lifetimes, and improve reliability. By contrast, ocean energy is an emerging renewable energy technology. Design, development, and testing of a myriad of devices remain mainly in the research and development stage, with many opportunities for materials science to improve design and performance, reduce costly maintenance procedures, and extend plant operating lifetimes under the harsh marine environment.


2021 ◽  
Vol 2 (1) ◽  
pp. 79-97
Author(s):  
Melis Aras

The energy transition in Europe requires not only the implementation of technological innovations to reduce carbon emissions but also the decentralised extension of these innovations throughout the continent, as demonstrated by the ‘Clean Energy for All Europeans’ package. However, decentralised energy generation, and specifically electricity generation, as it gives rise to new players and interactions, also requires a review of the energy planning process. In this sense, governance becomes the key concept for understanding the implementation of the energy transition in a territory. This is particularly visible in a cross-border setting, especially considering cross-border cooperation in the development of renewable energy sources (RES) provides the necessary elements to determine the criteria of local regulation between the different levels of governance. In light of the current legal framework in France, this paper presents the institutional framework of the multi-level governance of the RES development planning process. It concludes that it is quite conceivable for the rationales of governance at the local level (decentralisation) and the large-scale operation of a large interconnected network (Europeanisation) to coexist.


2016 ◽  
Vol 53 (5) ◽  
pp. 43-53
Author(s):  
G. Klāvs ◽  
A. Kundziņa ◽  
I. Kudrenickis

Abstract Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 – the investment support (IS) and the feed-in tariff (FIT) – on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation) is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors’ estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.


2021 ◽  
Vol 30 (3) ◽  
pp. 59-75
Author(s):  
M. A. Golovchin

In 2016-2018 the state in Russia adopted a package of program documents, which implies the transfer of education to the large-scale introduction of digital technologies. This phenomenon has been called “digitalization of education”. In scientific literature, electronization and digitalization are increasingly called one of the institutional traps for the development of Russian universities, since the corresponding institutional environment has not yet been formed due to the forced nature of innovations. As a result, the processes of introducing new technologies into education are still not regulated. Within the framework of the purpose of the study, the manifestations of the trap of electronization and digitalization of Russian higher education were analyzed on the basis of sociological data, and the theoretical modeling of the process of adaptation of educational agents to the institution of digitalization was carried out.In the course of the study, the approaches were summarized that have been developed in discussions on educational digitalization. The article presents the author’s vision of the studied phenomenon as an institutional trap; as well as understanding of the institutional features and characteristics of electronization and digitalization in education.The research method is the analysis of estimates obtained in the course of an expert survey which was conducted by the Vologda Scientific Center of the Russian Academy of Sciences among the representatives of the teaching staff of state universities in the Vologda region. In the course of this analysis, the indicators of educational digitalization as an effective innovation were clarified such as an increased accessibility of educational resources; simplification of communication and the process of transferring knowledge from teacher to student; increased opportunities for training specialists for the new (digital) economy; improving the quality of education in universities, etc. Based on the results of the empirical study, it has been determined that the conditions for the development of digitalization in Russian universities are currently ambiguous, which is closely related to the level of competitiveness of the educational organization.The scientific novelty of the research consists in the presentation of an original matrix describing the process of university employees adaptation to the conditions of digital transformation of education. The matrix is proposed on the basis of a sociological analysis of the impact of the trap of electronization and digitalization on the activities of educational agents. The matrix can be taken into account in the practice of higher education management.


Author(s):  
Linda Little ◽  
Pam Briggs

Certain privacy principles have been established by industry, (e.g. USCAM, 2006). Over the past two years, we have been trying to understand whether such principles reflect the concerns of the ordinary citizen. We have developed a method of enquiry which displays a rich context to the user in order to elicit more detailed information about those privacy factors that underpin our acceptance of ubiquitous computing. To investigate use and acceptance Videotaped Activity Scenarios specifically related to the exchange of health, financial, shopping and e-voting information and a large scale survey were used. We present a detailed analysis of user concerns firstly in terms of a set of constructs that might reflect user-generated privacy principles; secondly those factors likely to play a key role in an individual’s cost-benefit analysis and thirdly, longer-term concerns of the citizen in terms of the impact of new technologies on social engagement and human values.


Author(s):  
Jayati Das-Munshi ◽  
Tamsin Ford ◽  
Matthew Hotopf ◽  
Martin Prince ◽  
Robert Stewart

In this final chapter to the second edition of Practical Psychiatric Epidemiology, developments in psychiatric epidemiology since the first edition are summarized and the editors offer a view on where the future may lie. The themes summarized in this chapter include those related to large-scale datasets or ‘big data’, new technologies and science communication (including data generated through GPS tracking systems and the impact of social media), expanding biological data and biobanks, as well as the impact of globalization, migration, and culture on understanding psychiatric epidemiological principles. The last part of this chapter raises the important issue of open science initiatives. The chapter concludes with a brief discussion on the constancy and ongoing evolution of psychiatric epidemiology.


Sci ◽  
2019 ◽  
Vol 1 (2) ◽  
pp. 43 ◽  
Author(s):  
Patrick Moriarty ◽  
Damon Honnery

Because of the near-term risk of extreme weather events and other adverse consequences from climate change, and, at least in the longer term, global fossil fuel depletion, there is world-wide interest in shifting to noncarbon energy sources, especially renewable energy (RE). Because of possible limitations on conventional renewable energy sources, researchers have looked for ways of overcoming these shortcomings by introducing radically new energy technologies. The largest RE source today is bioenergy, while solar energy and wind energy are regarded as having the largest technical potential. This paper reviews the literature on proposed new technologies for each of these three RE sources: microalgae for bioenergy, photolysis and airborne wind turbines. The main finding is that their proponents have underestimated the difficulties facing their introduction on a very large scale.


2010 ◽  
Vol 149 (S1) ◽  
pp. 133-141 ◽  
Author(s):  
J. BOSTOCK

SUMMARYAquaculture development over the past 50 years has been facilitated largely by the application of science and the introduction of new technologies. Although aquaculture is a very diverse sector in products, production systems and business structures, almost every activity has benefited from scientific advances. However, the impact of technological progress is most clearly seen where there has also been substantial industrial consolidation. This has provided greater capital resources for investment and a more attractive market for suppliers of innovations to target. It has also encouraged consolidation of research capacity and stronger articulation between private and publicly funded research efforts. Further development along current trajectories is possible through advances in genomics, information technology, materials science and other areas. However, there may also be substantial disruptions if, for instance, energy becomes much more expensive, or large mono-cultures are impacted by climate change. Substantial change could also be driven by policies that aim at bringing realistic external costs of environmental services into company accounts. Research into more resilient aquaculture systems that comply more with ecological than financial accounting principles is under way, but will require substantial development to meet the challenges of rising food needs and social aspirations.


Sign in / Sign up

Export Citation Format

Share Document