Radionuclides in produced water from Norwegian oil and gas installations — concentrations and bioavailability

2006 ◽  
Vol 56 (S4) ◽  
pp. D43-D48 ◽  
Author(s):  
D. Ø. Eriksen ◽  
R. Sidhu ◽  
E. Strålberg ◽  
K. I. Iden ◽  
K. Hylland ◽  
...  
Keyword(s):  
CIM Journal ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 195-214
Author(s):  
G. J. Simandl ◽  
C. Akam ◽  
M. Yakimoski ◽  
D. Richardson ◽  
A. Teucher ◽  
...  

2019 ◽  
Author(s):  
Brian W. Stewart ◽  
◽  
Zachary G. Tieman ◽  
Rosemary C. Capo ◽  
Rebecca M. Matecha ◽  
...  

Chemosphere ◽  
2021 ◽  
pp. 129550
Author(s):  
Faraaz Ahmad ◽  
Katherine Morris ◽  
Gareth T.W. Law ◽  
Kevin Taylor ◽  
Samuel Shaw

2021 ◽  
Vol 775 ◽  
pp. 145485
Author(s):  
Yiqian Liu ◽  
Hao Lu ◽  
Yudong Li ◽  
Hong Xu ◽  
Zhicheng Pan ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1183
Author(s):  
Ashiqur Rahman ◽  
Shanglei Pan ◽  
Cymone Houston ◽  
Thinesh Selvaratnam

Produced water (PW) is the largest waste stream generated by the oil and gas industry. Traditional treatment of PW burdens the industry with significant expenses and environmental issues. Alternatively, microalgal-based bioremediation of PW is often viewed as an ecologically safe and sustainable platform for treating PW. Moreover, the nutrients in PW could support algal growth. However, significant dilution of PW is often required in algal-based systems due to the presence of complex chemical contaminants. In light of these facts, the current work has investigated the potential of cultivating Galdieria sulphuraria and Chlorella vulgaris in PW using multiple dilutions; 0% PW, 5% PW, 10% PW, 20% PW, 50% PW and 100% PW. While both algal strains can grow in PW, the current results indicated that G. sulphuraria has a higher potential of growth in up to 50% PW (total dissolved solids of up to 55 g L−1) with a growth rate of 0.72 ± 0.05 g L−1 d−1 and can achieve a final biomass density of 4.28 ± 0.16 g L−1 in seven days without the need for additional micronutrients. Additionally, the algae showed the potential of removing 99.6 ± 0.2% nitrogen and 74.2 ± 8.5% phosphorus from the PW.


Modelling ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 224-239
Author(s):  
Saeed P. Langarudi ◽  
Robert P. Sabie ◽  
Babak Bahaddin ◽  
Alexander G. Fernald

This paper explores the possibility and plausibility of developing a hybrid simulation method combining agent-based (AB) and system dynamics (SD) modeling to address the case study of produced water management (PWM). In southeastern New Mexico, the oil and gas industry generates large volumes of produced water, while at the same time, freshwater resources are scarce. Single-method models are unable to capture the dynamic impacts of PWM on the water budget at both the local and regional levels, hence the need for a more complex hybrid approach. We used the literature, information characterizing produced water in New Mexico, and our preliminary interviews with subject matter experts to develop this framework. We then conducted a systematic literature review to summarize state-of-the-art of hybrid modeling methodologies and techniques. Our research revealed that there is a small but growing volume of hybrid modeling research that could provide some foundational support for modelers interested in hybrid modeling approaches for complex natural resource management issues. We categorized these efforts into four classes based on their approaches to hybrid modeling. It appears that, among these classes, PWM requires the most sophisticated approach, indicating that PWM modelers will need to face serious challenges and break new ground in this realm.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1950
Author(s):  
Monika Gajec ◽  
Ewa Kukulska-Zając ◽  
Anna Król

Significant amounts of produced water, spent drilling fluid, and drill cuttings, which differ in composition and characteristics in each drilling operation, are generated in the oil and gas industry. Moreover, the oil and gas industry faces many technological development challenges to guarantee a safe and clean environment and to meet strict environmental standards in the field of processing and disposal of drilling waste. Due to increasing application of nanomaterials in the oil and gas industry, drilling wastes may also contain nanometer-scale materials. It is therefore necessary to characterize drilling waste in terms of nanomaterial content and to optimize effective methods for their determination, including a key separation step. The purpose of this study is to select the appropriate method of separation and pre-concentration of silver nanoparticles (AgNPs) from drilling wastewater samples and to determine their size distribution along with the state of aggregation using single-particle inductively coupled plasma mass spectrometry (spICP-MS). Two AgNP separation methods were compared: centrifugation and cloud point extraction. The first known use of spICP-MS for drilling waste matrices following mentioned separation methods is presented.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3251
Author(s):  
Tomasz Sliwa ◽  
Aneta Sapińska-Śliwa ◽  
Andrzej Gonet ◽  
Tomasz Kowalski ◽  
Anna Sojczyńska

Geothermal energy can be useful after extraction from geothermal wells, borehole heat exchangers and/or natural sources. Types of geothermal boreholes are geothermal wells (for geothermal water production and injection) and borehole heat exchangers (for heat exchange with the ground without mass transfer). The purpose of geothermal production wells is to harvest the geothermal water present in the aquifer. They often involve a pumping chamber. Geothermal injection wells are used for injecting back the produced geothermal water into the aquifer, having harvested the energy contained within. The paper presents the parameters of geothermal boreholes in Poland (geothermal wells and borehole heat exchangers). The definitions of geothermal boreholes, geothermal wells and borehole heat exchangers were ordered. The dates of construction, depth, purposes, spatial orientation, materials used in the construction of geothermal boreholes for casing pipes, method of water production and type of closure for the boreholes are presented. Additionally, production boreholes are presented along with their efficiency and the temperature of produced water measured at the head. Borehole heat exchangers of different designs are presented in the paper. Only 19 boreholes were created at the Laboratory of Geoenergetics at the Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Krakow; however, it is a globally unique collection of borehole heat exchangers, each of which has a different design for identical geological conditions: heat exchanger pipe configuration, seal/filling and shank spacing are variable. Using these boreholes, the operating parameters for different designs are tested. The laboratory system is also used to provide heat and cold for two university buildings. Two coefficients, which separately characterize geothermal boreholes (wells and borehole heat exchangers) are described in the paper.


2015 ◽  
Author(s):  
P.E.. E. Dan Mueller

Abstract The recycling and reuse of produced water (defined as hydraulic fracturing flowback water and formation water) is an increasing practice driven by competing demands for water sources and limited options for produced water disposal. The final disposition of reused/recycled produced water dictates the level of treatment with typically minimal treatment required when produce water is reused for fracturing subsequent wells and higher levels of treatment required when produced water is recycled for other purposes or potentially discharged to surface water bodies. The latter scenario, discharge of treated produced water is specifically addressed. Clean Water Act National Pollutant Discharge Elimination System (NPDES) permits for direct discharge of oil and gas generated discharge are currently prohibited east of the 98th meridian. West of the 98th meridian, direct discharge of treated oil and gas wastewater is allowed under specific conditions. Regardless of location (east or west of the 98th meridian), centralized wastewater treatment facilities (CWTs) can be permitted to treat and discharge oil and gas wastewater or CWT discharge may be accepted for further treatment and ultimate discharge at publically owned wastewater treatment facilities (POTWs). The EPA is currently developing effluent limitation guidelines (ELGs) for pretreatment of oil and gas wastewater sent to POTWs for treatment and discharge and recently submitted for comment Final 2012 and Preliminary 2014 Effluent Guidelines Program Plans; both addressed in this paper. Discussed are the various treatment technologies currently deployed and permitting issues associated with the treatment facilities. When treating produced water for discharge, constituent levels in the effluent stream and the waste side streams (consisting of a concentration of constituents removed as part of the water treatment processes) must be monitored to ensure proper management.


Sign in / Sign up

Export Citation Format

Share Document