centralized wastewater treatment
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 4)

2020 ◽  
Vol 21 (2) ◽  
pp. 227-235
Author(s):  
Muhammad Rizki Apritama ◽  
I Wayan Koko Suryawan ◽  
Yosef Adicita

ABSTRACTThe clean water supply system network on Lengkang Kecil Island was developed in 2019. A small portion of the community's freshwater comes from harvesting rainwater and dug wells, which are only obtained during the rainy season. The primary source of clean water used by the community comes from underwater pipelines with a daily discharge of 0.86 l/sec. The water supply of the Lengkang Kecil Island community is 74.3 m3/day, with 146 House Connections (HCs) and to serve public facilities such as elementary schools, primary health centers, and mosques. Hydraulic evaluation of clean water distribution using EPANET 2.0 software on flow velocity shows the lowest rate of 0.29 m/s and the highest of 1.21 m/s. The lowest pressure value in the distribution system is 6.94-6.96 m and headloss units in the range 0.08-0.25 m/km. These three criteria are still within the distribution network design criteria (feasible). A carbon footprint can be calculated from each activity from the analysis of the evaluation of clean water distribution networks. The most massive emissions came from pumping activities with 131 kg CO2-eq, followed by emissions from wastewater 62.5 kgCO2-eq. Further research is needed to determine the quality of wastewater and the design for a centralized wastewater treatment plant (IPALT) to improve Lengkang Kecil Island residents' living standards.Keywords: Lengkang Kecil Island, water, EPANET, carbon footprintABSTRAKJaringan sistem penyediaan air bersih pada Pulau Lengkang Kecil dimulai pada tahun 2019. Sebagian kecil air bersih yang digunakan masyarakat berasal dari pemanenan air hujan dan sumur gali yang hanya didapat pada musim hujan. Sumber air bersih utama yang digunakan masyarakat berasal dari pengaliran perpipaan bawah laut dengan debit harian 0,86 l/detik. Kebutuhan air masyarakat Pulau Lengkang Kecil adalah 74,3 m3/hari dengan 146 Sambungan Rumah (SR) serta untuk melayani fasilitas umum seperti sekolah dasar (SD), puskesmas, dan masjid. Evaluasi hidrolis distribusi air bersih dengan menggunakan software EPANET 2.0 terhadap kriteria kecepatan aliran menunjukkan nilai terendah 0,29 m/s dan tertinggi 1,21 m/s. Nilai sisa tekan dalam sistem distribusi adalah 6,94–6,96 m dan unit headloss pada kisaran 0,08–0,25 m/km. Ketiga kriteria ini masih berada dalam kriteria desain jaringan distribusi (layak). Dari analisis evaluasi jaringan distribusi air bersih, dapat dihitung jejak karbon yang dihasilkan dari setiap kegiatannya. Emisi terbesar berasal dari kegiatan pemompaan dengan nilai 131 kgCO2-eq, diikuti dengan emisi yang berasal dari air limbah dengan nilai 62,5 kgCO2-eq. Penelitian lanjutan diperlukan untuk mengetahui kualitas dari air limbah dan desain untuk instalasi pengolahan air limbah terpusat (IPALT) untuk meningkatkan taraf hidup penduduk Pulau Lengkang Kecil.Kata kunci: Pulau Lengkang Kecil, air, EPANET, jejak karbon


2020 ◽  
Vol 25 (3) ◽  
pp. 449-455
Author(s):  
Sigid Hariyadi ◽  
Niken Tunjung Murti Pratiwi ◽  
Majariana Krisanti ◽  
Adham Panji ◽  
Dwi Yuni Wulandari

Until now there has not been a centralized Wastewater Treatment Plant (WWTP) in IPB, even though there are wastewater treatments in several locations that are scattered in the campus area. Various activities on the Dramaga IPB campus have the potential to produce wastewater, such as laboratory activities, especially chemical and biological laboratories, canteens, offices, and dormitories. The existence of scattered laboratories requires a centralized and integrated WWTP. For this reason, mapping of wastewater distribution is needed to arrange the location of the wastewater treatment plant, within the campus. Interviews with the perpetrators of activities, measurement of wastewater quality, and sampling, were carried out at the work units producing wastewater on the campus of IPB. The distribution of wastewater was grouped according to the location of the work units producing waste and identified the types of waste produced (B3-dangerous and toxic and non-B3), then presented in a map. The map was used as a reference in determining the location of wastewater treatment plants. The results showed that each work unit contributes organic waste that was not too different, the source of inorganic and B3 wastewater distribution followed the location of the laboratory which was also quite scattered in the Dramaga IPB campus area. Based on the distribution of available waste, the presence of wastewater in the campus environment of IPB was divided into two regional groups. Therefore, the location of the wastewater treatment plant was directed at two locations, namely on the Northeast side (IPAL I) and the West side (IPAL II) of IPB campus.   Keywords: wastewater characteristics, wastewater distribution, wastewater treatment plant


Author(s):  
Xianchun Tang ◽  
Yexuan Wen ◽  
Yi He ◽  
Haixin Jiang ◽  
Xiaohu Dai ◽  
...  

Abstract The first full-scale semi-centralized wastewater treatment and resource recovery system based on source separation was implemented from 2014. To assess the operation performance, operating costs and resolve the problems faced in this system, the latest operation data from April 2017 to September 2018 was investigated. The results show that greywater and blackwater modules exhibited good removal performance for organics and nutrients, although misconnection between pipelines existed and influent loading rates fluctuated. The effluent could meet reuse standards. The biogas production rates of raw sludge could reach 7.27–10.9 m3 gas·per cubic raw sludge. The specific cost of treated water was higher than in a conventional treatment system. Power consumption made a major contribution to the total cost with a proportion of 55.3%–94.2%. After optimizing and considering the comprehensive efficiencies, the costs would be affordable. The dewatered sludge of the anaerobic digestion module has been applied to agricultural and landscaping soil. It is suggested that organics in blackwater could be recovered as volatile fatty acids with high-efficiency anaerobic fermentation and used as an external carbon source for short-cut biological nitrogen removal. In conclusion, the semi-centralized system will be a feasible and sustainable alternative for conventional treatment systems in future.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1012 ◽  
Author(s):  
Chanthephar Khattiyavong ◽  
Han Soo Lee

The fast-growing population in Vientiane, the capital of Laos, has resulted in increasing domestic wastewater generation, which directly impacts the urban water environment due to the lack of a suitable wastewater treatment system. This study aims to assess six wastewater treatment alternatives based on two technologies—trickling filter and activated sludge—used for on-site, decentralized, and centralized wastewater treatment systems to support decision-making for selecting the most suitable and practical alternative for wastewater treatment in Vientiane. To determine the most appropriate treatment system, the wastewater treatment process simulation with BioWin and the technique for order preference by similarity to ideal solution (TOPSIS) method are applied to assess the removal efficiencies for biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solids (TSS), as well as to rank the six wastewater treatment technologies based on the following four environmental criteria: (1) land requirement, (2) electricity use, (3) sludge production, and (4) CO2 emissions. The BioWin results illustrate that the capacity of each alternative is similar in terms of domestic wastewater treatment efficiency, while differing in terms of environmental impacts. In addition, the alternative ranking shows that a centralized wastewater treatment system with a trickling-filter process is more suitable than on-site and decentralized wastewater treatment systems based on their environmental impacts. This finding provides evidence for decision-makers to select a suitable alternative for wastewater treatment in order to promote access to safe sanitation and sustainable urban wastewater management in Vientiane, Laos.


2018 ◽  
Vol 2017 (2) ◽  
pp. 546-551 ◽  
Author(s):  
J. Liu ◽  
M. Tang

Abstract Many industrial parks adopt a two-tier wastewater management framework whereby tenants and the park are required to build satellite and centralized wastewater treatment facilities, respectively. Due to the diversity of industrial wastewaters, the treatment process scheme in the public centralized wastewater treatment plant (WWTP) may not suit the characteristics of all effluents discharged from the tenants. In consideration of varying wastewater biodegradability, the treatment scheme in a centralized WWTP is advised to install two series of treatment processes. In detail, various effluents from the tenants shall be commingled according to their levels of biodegradability. For the non-biodegradable streams, advanced oxidation processes shall be applied in addition to biological treatments. To facilitate the grouping of effluents, each effluent will be evaluated for its biodegradability. An analytical protocol derived from OECD standard (TG302B) was developed and found effective for biodegradability assessment. A case study is described in this paper to showcase the methodology.


Sign in / Sign up

Export Citation Format

Share Document