Future projection of maximum potential storm surge height at three major bays in Japan using the maximum potential intensity of a tropical cyclone

2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Nobuhito Mori ◽  
Nozomi Ariyoshi ◽  
Tomoya Shimura ◽  
Takuya Miyashita ◽  
Junichi Ninomiya
2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Nobuhito Mori ◽  
Nozomi Ariyoshi ◽  
Tomoya Shimura ◽  
Takuya Miyashita ◽  
Junichi Ninomiya

2020 ◽  
Vol 12 (1) ◽  
pp. 55-68
Author(s):  
M. I. Ali ◽  
M. Saifullah ◽  
A. Imran ◽  
I. M. Syed ◽  
M. A. K. Mallik

Tropical Cyclone (TC) is the most devastating atmospheric incidents which occur frequently in pre-monsoon and the post-monsoon season in Bangladesh. The Bay of Bengal (BoB) is one of the most vulnerable places of TC induced storm surge. The triangular shape of BoB plays an important role to drive the sea water towards the coast and amplify the surges. In this study, minimum central pressure, maximum wind speed and track of TC Roanu are predicted by the WRF model. At the same time, prediction of cyclone induced storm surge for TC Roanu is done by using MRI storm surge model which is conducted by JMA. The input files for this parametric model is provided by using simulated data of WRF model and observed data of IMD. The results are compared with available recorded data of surge height for this cyclone. The differences in simulated output for two different input files are also studied. The maximum surge height from the MRI model is found 3 m using WRF simulated data and for IMD estimated data the maximum surge height is found 2.5 m. The simulated surge heights are found in decent contract with the available reported data of the storm surges.


2012 ◽  
Vol 66 (3) ◽  
pp. 1481-1500 ◽  
Author(s):  
I.-I. Lin ◽  
Gustavo J. Goni ◽  
John A. Knaff ◽  
Cristina Forbes ◽  
M. M. Ali

2015 ◽  
Vol 71 (2) ◽  
pp. I_1513-I_1518 ◽  
Author(s):  
Yoko SHIBUTANI ◽  
Sota NAKAJO ◽  
Nobuhito MORI ◽  
Sooyoul KIM ◽  
Hajime MASE

Author(s):  
Junichi Ninomiya ◽  
Yuya Taka ◽  
Nobuhito Mori

IPCC AR5 reported that the extreme events like tropical cyclone, heavy rainfall and so on will be strengthen. The winter cyclone is one of the cause of coastal hazard. The winter cyclone is defined as the extratropical depression with rapid development. It causes high wave and storm surge from winter to spring, and Japan sometimes have casualties and economical loss. Some researches reported that the number of winter cyclone tend to increase. Because its tendency seems to go on, future change estimation of winter cyclone activity is important for disaster reduction. Understanding of winter cyclone is developing. For example, Yoshida and Asuma showed that the winter cyclones are classified by their track and the development of winter cyclone is related to lateral heat flux. On the other hand, almost of all researches of impact assessment on coastal hazard focus on the tropical cyclone. Mori et al. showed the maximum potential storm surge in Japan using maximum potential intensity of tropical cyclone and GCM outputs, and large storm surge will increase. Shimura et al. showed that extreme wave caused by the tropical cyclone will develop at offshore region of east from Japan. This research aims to reveal stochastic future change of winter cyclone using the database for policy decision making for future climate change (after here, d4PDF) which is huge ensemble dataset of present- and futureclimate. Then, the risk of coastal hazard will be evaluate.


2020 ◽  
Vol 95 (sp1) ◽  
pp. 252
Author(s):  
Hwa-Young Lee ◽  
Yeong-Han Jeong ◽  
Dong-Hwan Kim ◽  
Dong-Seag Kim ◽  
Whan-Hee Cho ◽  
...  

Author(s):  
Sota Nakajo ◽  
Hideyuki Fujiki ◽  
Sooyoul Kim ◽  
Nobuhito Mori

In total 82 tropical cyclones data was used to determine scenarios of translation speed, minimum central pressure and track for risk assessment of storm surge at Tokyo Bay. The numerical simulation of waves and flows was conducted by solving non-linear long wave equations. The maximum surge height shows that the typhoon passing through along northeast directional track is dangerous for Tokyo Bay. This trend confirms the previous risk assessment was reasonable. However, it has been shown that the typhoon passing through along north directional track is also dangerous although the frequency is low. Especially, it is interesting that the typhoon passing through along northwest directional track causes distinctive resurgence and harbor oscillation.


2019 ◽  
Vol 54 (1-2) ◽  
pp. 1007-1021 ◽  
Author(s):  
Job C. M. Dullaart ◽  
Sanne Muis ◽  
Nadia Bloemendaal ◽  
Jeroen C. J. H. Aerts

Abstract This study examines the implications of recent advances in global climate modelling for simulating storm surges. Following the ERA-Interim (0.75° × 0.75°) global climate reanalysis, in 2018 the European Centre for Medium-range Weather Forecasts released its successor, the ERA5 (0.25° × 0.25°) reanalysis. Using the Global Tide and Surge Model, we analyse eight historical storm surge events driven by tropical—and extra-tropical cyclones. For these events we extract wind fields from the two reanalysis datasets and compare these against satellite-based wind field observations from the Advanced SCATterometer. The root mean squared errors in tropical cyclone wind speed reduce by 58% in ERA5, compared to ERA-Interim, indicating that the mean sea-level pressure and corresponding strong 10-m winds in tropical cyclones greatly improved from ERA-Interim to ERA5. For four of the eight historical events we validate the modelled storm surge heights with tide gauge observations. For Hurricane Irma, the modelled surge height increases from 0.88 m with ERA-Interim to 2.68 m with ERA5, compared to an observed surge height of 2.64 m. We also examine how future advances in climate modelling can potentially further improve global storm surge modelling by comparing the results for ERA-Interim and ERA5 against the operational Integrated Forecasting System (0.125° × 0.125°). We find that a further increase in model resolution results in a better representation of the wind fields and associated storm surges, especially for small size tropical cyclones. Overall, our results show that recent advances in global climate modelling have the potential to increase the accuracy of early-warning systems and coastal flood hazard assessments at the global scale.


Sign in / Sign up

Export Citation Format

Share Document