Carcinoembryonic antigen-stimulated THP-1 macrophages activate endothelial cells and increase cell–cell adhesion of colorectal cancer cells

2007 ◽  
Vol 24 (3) ◽  
pp. 201-209 ◽  
Author(s):  
Cary B. Aarons ◽  
Olga Bajenova ◽  
Charles Andrews ◽  
Stanley Heydrick ◽  
Kristen N. Bushell ◽  
...  
2020 ◽  
pp. mbc.E20-05-0321
Author(s):  
Maree C. Faux ◽  
Lauren E. King ◽  
Serena R. Kane ◽  
Christopher Love ◽  
Oliver M. Sieber ◽  
...  

The APC tumor suppressor protein is associated with the regulation of Wnt signaling, however APC also controls other cellular processes including the regulation of cell adhesion and migration. The expression of full-length APC in SW480 colorectal cancer cells (SW480+APC) not only reduces Wnt signaling, but increases membrane E-cadherin and restores cell-cell adhesion. This report describes the effects of full-length, wild-type APC (fl-APC) on cell-cell adhesion genes and p120-catenin isoform switching in SW480 colon cancer cells: fl-APC increased the expression of genes implicated in cell-cell adhesion, whereas the expression of negative regulators of E-cadherin were decreased. Analysis of cell-cell adhesion-related proteins in SW480+APC cells revealed an increase in p120-catenin isoform 3A; similarly, depletion of APC altered the p120-catenin protein isoform profile. Expression of ESRP1 (epithelial splice regulatory protein 1) is increased in SW480+APC cells and its depletion results in reversion to the p120-catenin isoform 1A phenotype and reduced cell-cell adhesion. ESRP1 transcript is reduced in primary CRC and its expression correlates with the level of APC. Pyrvinium pamoate, which inhibits Wnt signaling, promotes ESRP1 expression. We conclude that re-expression of APC restores cell-cell adhesion gene and post-transcriptional regulatory programs leading to p120-catenin isoform switching and associated changes in cell-cell adhesion.


2019 ◽  
Author(s):  
JIachi Ma ◽  
Shoukai Zhang ◽  
Danru Liang ◽  
Lei Li ◽  
Jun Du ◽  
...  

Abstract Background: To better explore the underlying mechanism of liver metastatic formation by placenta-specific protein 1 (PLAC1) in human colorectal cancer, we investigated the proliferation, invasion and angiogenic capabilities of human colorectal cancer cell lines with different liver metastatic potentials as well as the mechanism of action of PLAC1 in the metastatic process. Methods: The expression of PLAC1 was detected by reverse transcriptase PCR, western blot and real-time PCR. The effect of PLAC1 on metastatic potential was determined by proliferation, invasion, and angiogenesis assays, including an in vitro coculture system consisting of cancer cells and vascular endothelial cells that were used to detect the relationship between cancer cells and angiogenesis. In addition, we also determined PLAC1 downstream targets that preferentially contribute to the metastatic process. Results: PLAC1 was expressed in HT-29, WiDr and CaCo-2 colorectal cancer cells but not in Colo320 colorectal cancer cells. PLAC1 could not only significantly enhance the proliferation of CoLo320 and human umbilical vein endothelial cells (HUVECs) but could also promote the invasion of CoLo320 cells. The angiogenesis of HUVECs was enhanced by PLAC1 in a dose-dependent manner. In cocultured systems, angiogenesis was significantly increased by coculture with HT-29 cells. In addition, PLAC1 could promote angiogenesis in coculture with HT-29 cells. Furthermore, PLAC1-enhanced metastatic potential of colorectal cancer cells was dependent on activation of the PI3K/Akt/NF-κB pathway. Conclusions: The activation of PI3K/Akt/NF-κB signaling by PLAC1 may be critical for the metastasis of colorectal cancer cells. According to our results, we suggest that modification of PLAC1 function might be a promising new therapeutic approach to inhibit the aggressive spread of colorectal cancer.


2011 ◽  
Vol 140 (5) ◽  
pp. S-402
Author(s):  
Vineeta Khare ◽  
Alex Lyakhovich ◽  
Michaela Lang ◽  
Boris Tichy ◽  
Sarka Pospisilova ◽  
...  

2011 ◽  
Vol 44 (13) ◽  
pp. S68-S69 ◽  
Author(s):  
Abbas Pakdel ◽  
Fakhraddin Naghibalhossaini ◽  
Pooneh Mokaram ◽  
Mansoreh Mansooreh Jaberipour ◽  
Ahmad Hosseini

2011 ◽  
Vol 187 (2) ◽  
pp. 120-126 ◽  
Author(s):  
Birgit Meller ◽  
Margarete Rave-Fränck ◽  
Christian Breunig ◽  
Markus Schirmer ◽  
Manfred Baehre ◽  
...  

2020 ◽  
Author(s):  
Jiachi Ma ◽  
Lei Li ◽  
Jun Du ◽  
Chengwu Pan ◽  
Chensong Zhang ◽  
...  

Abstract Abstract Background: To better explore the underlying mechanism of liver metastatic formation by placenta-specific protein 1 (PLAC1) in human colorectal cancer, we investigated the proliferation, invasion and angiogenic capabilities of human colorectal cancer cell lines with different liver metastatic potentials as well as the mechanism of action of PLAC1 in the metastatic process. Methods: The expression of PLAC1 was detected by reverse transcriptase PCR, western blot and real-time PCR. The effect of PLAC1 on metastatic potential was determined by proliferation, invasion, and angiogenesis assays, including an in vitro coculture system consisting of cancer cells and vascular endothelial cells that were used to detect the relationship between cancer cells and angiogenesis. In addition, we also determined PLAC1 downstream targets that preferentially contribute to the metastatic process. Results: PLAC1 was expressed in HT-29, WiDr and CaCo-2 colorectal cancer cells but not in Colo320 colorectal cancer cells. PLAC1 not only enhanced significantly the proliferation of CoLo320 and human umbilical vein endothelial cells (HUVECs), but also promoted the invasion of CoLo320 cells. The angiogenesis of HUVECs was enhanced by PLAC1 in a dose-dependent manner. In cocultured systems, angiogenesis was significantly increased by coculture with HT-29 cells. In addition, PLAC1 could promote angiogenesis in coculture with HT-29 cells. Furthermore, PLAC1-enhanced metastatic potential of colorectal cancer cells was dependent on activation of the PI3K/Akt/NF-κB pathway. Conclusions: The activation of PI3K/Akt/NF-κB signaling by PLAC1 may be critical for the metastasis of colorectal cancer cells. According to our results, we suggest that modification of PLAC1 function might be a promising new therapeutic approach to inhibit the aggressive spread of colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document