scholarly journals Pronounced genetic structure and low genetic diversity in European red-billed chough (Pyrrhocorax pyrrhocorax) populations

2012 ◽  
Vol 13 (5) ◽  
pp. 1213-1230 ◽  
Author(s):  
Marius A. Wenzel ◽  
Lucy M. I. Webster ◽  
Guillermo Blanco ◽  
Malcolm D. Burgess ◽  
Christian Kerbiriou ◽  
...  
2014 ◽  
Vol 16 (4) ◽  
pp. 1011-1012
Author(s):  
Marius A. Wenzel ◽  
Lucy M. I. Webster ◽  
Guillermo Blanco ◽  
Malcolm D. Burgess ◽  
Christian Kerbiriou ◽  
...  

2021 ◽  
pp. 1-10
Author(s):  
Emiliano Mori ◽  
Claudia Brunetti ◽  
Antonio Carapelli ◽  
Lucia Burrini ◽  
Niccolò Fattorini ◽  
...  

Abstract Genetic structure may be highly variable across seabird species, and particularly among those that are distributed over large geographical areas. The Adélie penguin (Pygoscelis adeliae) is a numerically dominant Antarctic seabird that is considered to be a key species in coastal ecosystems. Since the Last Glacial Maximum, penguin colonization of the Antarctic coastline occurred at varying geographical and temporal scales, contributing to an incomplete understanding of how modern colonies relate to each other at local or regional scales. We assessed the population genetic structure of Adélie penguins (n = 86 individuals) from three adjacent colonies along the Victoria Land coast using molecular genetic markers (i.e. seven microsatellite loci isolated through next-generation sequencing). Our results indicate meta-population dynamics and possibly relationships with habitat quality. A generally low genetic diversity (Nei's index: 0.322–0.667) was observed within each colony, in contrast to significant genetic heterogeneity among colonies (pairwise FST = 0.071–0.148), indicating that populations were genetically structured. Accordingly, an assignment test correctly placed individuals within the respective colonies from which they were sampled. The presence of inter-colony genetic differentiation contrasts with previous studies on this species that showed a lack of genetic structure, possibly due to higher juvenile or adult dispersal. Our sampled colonies were not panmictic and suggest a lower migration rate, which may reflect relatively stable environmental conditions in the Ross Sea compared to other regions of Antarctica, where the ocean climate is warming.


2018 ◽  
Vol 56 (6) ◽  
pp. 586-617 ◽  
Author(s):  
Chaoying Zhu ◽  
Peng Chen ◽  
Yuqing Han ◽  
Luzhang Ruan

2014 ◽  
Vol 57 (2) ◽  
pp. 1 ◽  
Author(s):  
Giullia Forti ◽  
Evandro Vagner Tambarussi ◽  
Paulo Yoshio Kageyama ◽  
Maria Andreia Moreno ◽  
Elza Martins Ferraz ◽  
...  

Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 143 ◽  
Author(s):  
Nikola Lacković ◽  
Milan Pernek ◽  
Coralie Bertheau ◽  
Damjan Franjević ◽  
Christian Stauffer ◽  
...  

The gypsy moth, Lymantria dispar, a prominent polyphagous species native to Eurasia, causes severe impacts in deciduous forests during irregular periodical outbreaks. This study aimed to describe the genetic structure and diversity among European gypsy moth populations. Analysis of about 500 individuals using a partial region of the mitochondrial COI gene, L. dispar was characterized by low genetic diversity, limited population structure, and strong evidence that all extant haplogroups arose via a single Holocene population expansion event. Overall 60 haplotypes connected to a single parsimony network were detected and genetic diversity was highest for the coastal populations Croatia, Italy, and France, while lowest in continental populations. Phylogenetic reconstruction resulted in three groups that were geographically located in Central Europe, Dinaric Alps, and the Balkan Peninsula. In addition to recent events, the genetic structure reflects strong gene flow and the ability of gypsy moth to feed on about 400 deciduous and conifer species. Distinct genetic groups were detected in populations from Georgia. This remote population exhibited haplotypes intermediate to the European L. dispar dispar, Asian L. dispar asiatica, and L. dispar japonica clusters, highlighting this area as a possible hybridization zone of this species for future studies applying genomic approaches.


2007 ◽  
Vol 97 (3) ◽  
pp. 304-310 ◽  
Author(s):  
Zhihua Zhou ◽  
Daisuke Sakaue ◽  
Bingyun Wu ◽  
Taizo Hogetsu

We analyzed the genetic structure of Bursaphelenchus xylophilus populations within individual trees (subpopulations) in three distant pine forests (Tanashi, Tsukuba, and Chiba in Japan) based on the polymorphism of four microsatellite (SSR) markers. Most of the nematodes from subpopulations in Tanashi showed the same genotype over 2 years, indicating that nematodes of that genotype dominated there for years. In contrast, 16 and 15 genotypes were identified in nematode populations from Tsukuba and Chiba, respectively. Despite the high genetic diversity within the Tsukuba and Chiba populations, extremely low genetic diversity was observed within the subpopulations. The genetic difference between the Tsukuba and Chiba populations was significantly smaller than that between Tanashi and either Tsukuba or Chiba. Observed heterozygosity was significantly less than expected based on Hardy-Weinberg equilibrium. These findings are best explained by a founder effect, geographic isolation between populations, explosive nematode multiplication from a small number within individual trees, and the Wahlund effect.


2012 ◽  
Vol 10 (4) ◽  
pp. 821-828 ◽  
Author(s):  
Juliano Vilas Boas Ramos ◽  
Leda Maria Koelblinger Sodré ◽  
Mário Luís Orsi ◽  
Fernanda Simões de Almeida

Dams constructed along waterways interrupt the dispersion and migration of aquatic organisms, affecting mainly the abundance of migratory fish species. Translocation mechanisms have been constructed at dams aiming to minimize their impact on fish species migration behavior. There is little information available about the effect of the construction of dams on the genetic structure of the Neotropical migratory fish fauna. Therefore, RAPD molecular markers and microsatellites were utilized to evaluate the diversity and genetic structure of the migratory species Leporinus elongatus (piapara) in the Canoas Complex - Paranapanema River - Brazil. Ten groups were sampled in the fish ladders of the hydroelectric dam Canoas I and Canoas II during the reproductive period in three consecutive years. Both markers showed a high level of genetic diversity within these groups. The microsatellite markers demonstrated a loss of heterozygosity and a considerable level of inbreeding in the species. The genetic differentiation found among the groups with both markers utilized is within a range from low to moderate. The data obtained with the parameter of genetic diversity among the groups led to the conclusion that the groups of L. elongatus of the Canoas Complex are structured as a single population composed of sub-populations with low genetic diversity among them. The data on genetic diversity and population structure of L. elongatus are of great importance for the development of the species management and conservation programs in the Canoas Complex, which can also be utilized in aquaculture programs.


2022 ◽  
Author(s):  
Jin-Yong Kim ◽  
Soo Hyung Eo ◽  
Seung-Gu Kang ◽  
Jung Eun Hwang ◽  
Yonggu Yeo ◽  
...  

Abstract Background Hill pigeons (Columba rupestris) are close to local extinction (ca. less than 100 individuals) in South Korea where a variety of conservation management procedures are urgently required. Objective This study was aimed at determining the conservation direction of captive propagation and reintroduction of hill pigeons using genetic information based on mitochondrial DNA. We also evaluated the extent of hybridization between hill pigeons and cohabiting domestic pigeons. Methods We used 51 blood samples of hill pigeons from Goheung (GH), Gurye (GR), and Uiryeong (UR), and domestic pigeons cohabiting with hill pigeon populations. Genetic diversity, pairwise Fst, analysis of molecular variance, and haplotype network analysis were used to examine the genetic structure of hill pigeons. Results Hill pigeons that inhabited South Korea were not genetically distinct from Mongolian and Russian populations and showed relatively low genetic diversity compared with other endangered species in Columbidae. The GR population that exhibited the largest population size showed lower genetic diversity, compared to the other populations, although the pairwise Fst values of the three populations indicated low genetic differentiation. The GH and GR populations were confirmed to lack hybridization, relatively, whereas the UR population was found to exhibit some degrees of hybridization. Conclusion To conserve hill pigeons with low genetic diversity and differentiation in South Korea, the conservation process of captive propagation and reintroduction may require artificial gene flows among genetically verified populations in captivity and wildness. The introduction of foreign individuals from surrounding countries is also considered an alternative strategy for maintaining genetic diversity.


Sign in / Sign up

Export Citation Format

Share Document