Serine hydroxymethyltransferase 2: a novel target for human cancer therapy

Author(s):  
Min Xie ◽  
Dong-Sheng Pei
2000 ◽  
Vol 6 (4) ◽  
pp. 393-416 ◽  
Author(s):  
Ruiwen Zhang ◽  
Hui Wang

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuanjun Lu ◽  
Yau-Tuen Chan ◽  
Hor-Yue Tan ◽  
Sha Li ◽  
Ning Wang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4250
Author(s):  
Xiao-Jing Pang ◽  
Xiu-Juan Liu ◽  
Yuan Liu ◽  
Wen-Bo Liu ◽  
Yin-Ru Li ◽  
...  

FAK is a nonreceptor intracellular tyrosine kinase which plays an important biological function. Many studies have found that FAK is overexpressed in many human cancer cell lines, which promotes tumor cell growth by controlling cell adhesion, migration, proliferation, and survival. Therefore, targeting FAK is considered to be a promising cancer therapy with small molecules. Many FAK inhibitors have been reported as anticancer agents with various mechanisms. Currently, six FAK inhibitors, including GSK-2256098 (Phase I), VS-6063 (Phase II), CEP-37440 (Phase I), VS-6062 (Phase I), VS-4718 (Phase I), and BI-853520 (Phase I) are undergoing clinical trials in different phases. Up to now, there have been many novel FAK inhibitors with anticancer activity reported by different research groups. In addition, FAK degraders have been successfully developed through “proteolysis targeting chimera” (PROTAC) technology, opening up a new way for FAK-targeted therapy. In this paper, the structure and biological function of FAK are reviewed, and we summarize the design, chemical types, and activity of FAK inhibitors according to the development of FAK drugs, which provided the reference for the discovery of new anticancer agents.


2021 ◽  
Author(s):  
Moataz Dowaidar

Except in human clinical trials, preclinical tests showed the potential of Salmonella bacteria for tumor therapy. There are still various challenges to tackle before salmonella bacteria may be employed to treat human cancer. Due to its pathogenic nature, attenuation is essential to minimize the host's harmful effects of bacterial infection. Loss of anticancer efficacy from bacterial virulence attenuation can be compensated by giving therapeutic payloads to microorganisms. Bacteria can also be linked to micro-or nanomaterials with diverse properties, such as drug-loaded, photocatalytic and/or magnetic-sensing nanoparticles, using the net negative charge of the bacteria. Combining bacteria-mediated cancer treatment with other medicines that have been clinically shown to be helpful but have limits may provide surprising therapeutic results. Recently, this strategy has received attention and is underway. The use of live germs for cancer treatment has not yet been approved for human clinical trials. The non-invasive oral form of administration benefits from safety, making it more suitable for clinical cancer patients.Infection of live germs through systemic means, on the other hand, involves toxicity risk. Although Salmonella bacteria can be genetically manipulated with high tumor targeting, harm to normal tissues can not be excluded when medications with nonspecific toxicity are administered. It is preferred if the action of selected drugs may be restricted to the tumor site rather than healthy tissues, thereby boosting cancer therapy safety. In recent years, many regulatory mechanisms have been developed to manage pharmaceutical distribution through live bacterial vectors. Engineered salmonella can accumulate 1000 times greater than normal tissue density in the tumor. The QS-regulated mechanism, which initiates gene expression when bacterial density exceeds a particular threshold level, also promises Salmonella bacteria for targeted medication delivery. Nanovesicle structures of Salmonella bacteria can also be used as biocompatible nanocarriers to deliver functional medicinal chemicals in cancer therapy. Surface-modified nanovesicles preferably attach to tumor cells and are swallowed by receptor-mediated endocytosis before being destroyed to release packed drugs. The xenograft methodology, which comprises the implantation of cultivated tumor cell lines into immunodeficient mice, has often been used in preclinical research revealing favorable results about the anticancer effects of genetically engineered salmonella.


Development ◽  
2018 ◽  
Vol 145 (21) ◽  
pp. dev168898 ◽  
Author(s):  
Philip W. Ingham
Keyword(s):  

2004 ◽  
Vol 2 (8) ◽  
pp. 38-39
Author(s):  
N. Jing ◽  
Y. Li ◽  
W. Sha ◽  
W. Xiong ◽  
D. Tweardy

2015 ◽  
Vol 3 (3) ◽  
pp. 457-468 ◽  
Author(s):  
Ishita Matai ◽  
Abhay Sachdev ◽  
P. Gopinath

Herein, we report the development of a poly(amidoamine) (PAMAM) dendrimer based multicomponent therapeutic agent forin vitrocancer therapy applications.


2018 ◽  
Vol 22 (8) ◽  
pp. 675-686 ◽  
Author(s):  
Abhijit Aithal ◽  
Sanchita Rauth ◽  
Prakash Kshirsagar ◽  
Ashu Shah ◽  
Imayavaramban Lakshmanan ◽  
...  
Keyword(s):  

2005 ◽  
Vol 2 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Richard J. Pietras ◽  
Olga K. Weinberg

Despite advances in the early detection of tumors and in the use of chemotherapy, radiotherapy and surgery for disease management, the worldwide mortality from human cancer remains unacceptably high. The treatment of cancer may benefit from the introduction of novel therapies derived from natural products. Natural products have served to provide a basis for many of the pharmaceutical agents in current use in cancer therapy. Emerging research indicates that progressive growth and spread of many solid tumors depends, in part, on the formation of an adequate blood supply, and this process of tumor-associated angiogenesis is reported to have prognostic significance in several human cancers. This review focuses on the potential application in antitumor therapy of naturally-occurring steroids that target tumor-associated angiogenesis. Squalamine, a 7,24 dihydroxylated 24-sulfated cholestane steroid conjugated to a spermidine at position C-3, is known to have strong antiangiogenic activityin vitro, and it significantly disrupts tumor proliferation and progression in laboratory studies. Work on the interactions of squalamine with vascular endothelial cells indicate that it binds with cell membranes, inhibits the membrane Na+/H+ exchanger and may further function as a calmodulin chaperone. These primary actions appear to promote inhibition of several vital steps in angiogenesis, such as blockade of mitogen-induced actin polymerization, cell–cell adhesion and cell migration, leading to suppression of endothelial cell proliferation. Preclinical studies with squalamine have shown additive benefits in tumor growth delay when squalamine is combined with cisplatin, paclitaxel, cyclophosphamide, genistein or radiation therapy. This compound has also been assessed in early phase clinical trials in cancer; squalamine was found to exhibit little systemic toxicity and was generally well tolerated by treated patients with various solid tumor malignancies, including ovarian, non-small cell lung and breast cancers. Clinical trials with squalamine alone or combined with standard chemotherapies or other biologic therapies, including antiangiogenic agents, should be considered for selected cancer patients, and further study of the mechanism of action and bioactivity of squalamine is warranted.


Sign in / Sign up

Export Citation Format

Share Document