Geophagic clay materials from Nigeria: a potential source of heavy metals and human health implications in mostly women and children who practice it

2014 ◽  
Vol 37 (2) ◽  
pp. 363-375 ◽  
Author(s):  
U. A. Lar ◽  
J. I. Agene ◽  
A. I. Umar
2019 ◽  
Author(s):  
Ngozi Oguguah

Background. The most significant sources of food-borne diseases are microbiological and chemical hazards. The health risk due to consumption of food from aquatic ecosystems contaminated with hazardous chemicals including metals has increased globally, especially in developing countries like Nigeria.Objectives. The concentration and human health implications of trace metals in fish of economic importance in Lagos lagoon were investigated by determining the degree of contamination with heavy metals of selected fish from Lagos lagoon and assessing the possible health risks associated with fish consumption.Methods. Fish of economic importance including Caranx hippos, Chrysichthys nigrodigitatus, Elops lacerta, Galeoides decadactylus, Ilisha africana, Liza falcipinnis, Lutjanus goreensis, Mugil cephalus, Pseudotolithus senegalensis, Sarotherodon spp, Sphyraena spp, and Tilapia spp were bought from fishermen fishing in Lagos lagoon. The fish tissue samples were digested and analyzed in five replicates for heavy metals (lead, cadmium, iron, manganese and zinc) using a Varian AA600 atomic absorption spectrometer.Results. There were considerable variations in the concentrations of heavy metals among different species. The twelve fish species collected from Lagos lagoon were found to contain various concentrations of heavy metals and the levels of accumulation of these heavy metals varied across different species. Lead, cadmium, and manganese were present in all the studied fish species at higher concentrations than the maximum allowable concentrations in fish recommended by the Food and Agricultural Organization (FAO) and World Health Organization (WHO). The target hazard quotient (THQ) estimated for individual heavy metals through consumption of different fish species was less than 1 for all individual heavy metal in all the fish species.Conclusions. Controls on the dumping of wastes in the lagoon are needed, along with regular monitoring. Currently, no potential non-carcinogenic health risks from ingestion of a single heavy metal through consumption of these fish species was found.


Author(s):  
KENNY ESCOBAR-SEGOVIA ◽  
SAMANTHA JIMÉNEZ-OYOLA ◽  
DANIEL GARCÉS-LEÓN ◽  
DANIELA PAZ-BARZOLA ◽  
EDUARDO CHAVEZ NAVARRETE ◽  
...  

2017 ◽  
Vol 50 ◽  
pp. 37-44 ◽  
Author(s):  
Jiali Cheng ◽  
Xianhui Zhang ◽  
Zhenwu Tang ◽  
Yufei Yang ◽  
Zhiqiang Nie ◽  
...  

2008 ◽  
Vol 42 (7) ◽  
pp. 2674-2680 ◽  
Author(s):  
Anna O. W. Leung ◽  
Nurdan S. Duzgoren-Aydin ◽  
K. C. Cheung ◽  
Ming H. Wong

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dechasa Adare Mengistu

Abstract Background Besides their benefits, heavy metals are toxic, persistent, and hazardous to human health, even at their lower concentrations. Consumption of unsafe concentrations of food contaminated with heavy metals may lead to the disruption of numerous biological and biochemical processes in the human body. In developing country including Ethiopia, where untreated or partially treated wastewater is used for agricultural purposes, the problems related to the consumption foods contaminated with heavy metals may poses highest risk to human health. Therefore, this review was aimed to determine the public health implications of heavy metals in foods and drinking water in Ethiopia. Methods The articles published from 2016 to 2020 were identified through systematic searches of electronic databases that include MEDLINE/PubMed, EMBASE, CINAH, Google Scholar, WHO, and FAO Libraries. The data was extracted using a predetermined data extraction form using Microsoft Excel, 2016. The methodological quality of the included studies was assessed using mixed methods appraisal tool (MMAT) version 2018 and Joanna Briggs Institute Critical Appraisal tools to determine the relevance of the studies. Finally, the results were evaluated based on the FAO/WHO guidelines for foods and drinking water. Results A total of 1019 articles published from 2016 to 2020 were searched from various electronic databases and by manual searching on Google. Following the initial screening, 317 articles were retrieved for evaluation and 49 articles were assessed for eligibility, of which 21 studies were included in the systematic review. The mean concentration of Cr, Cd, Pb, As, Hg, Zn, Cu, Ni, Co, Fe and Mn in fruits and vegetables ranged from 2.068–4.29, 0.86–1.37, 1.90–4.70, 1.01–3.56, 3.43–4.23, 19.18–98.15, 4.39–9.42, 1.037–5.27, 0.19–1.0, 199.5–370.4, 0.26–869 mg/kg, respectively. The mean concentration Cr, Cd, Pb, As, Zn, and Fe in meat and milk ranged from 1.032–2.72, 0.233–0.72, 1.32–3.15, 0.79–2.96, 78.37–467.7, and 505.61–3549.9 mg/kg, respectively. The mean concentration of Cr, Cd, Pb, Zn, and Cu in drinking water ranged 0.0089–0.054, 0.02–0.0237, 0.005–0.369, 0.625–2.137, and 0.176–1.176 ml/L, respectively. The mean concentration of Cr, Cd, Pb, Zn, Cu, Ni, Co, Fe, and Mn in other edible cereals ranged from 0.973–2.165, 0.424–0.55, 0.65–1.70, 70.51–81.58, 14.123–15.98, 1.89–13.8, 1.06–1.59, 67.866–110.3, and 13.686–15.4 mg/kg, respectively. Conclusion This systematic review identified heavy metals in foods and drinking water and determined their public health implications. The results of this finding imply that the majority of the studies reported high concentrations of toxic heavy metals in foods and drinking water that are hazardous to human health. Therefore, effective food safety and risk-based food quality assessment are essential to protect the public health.


Sign in / Sign up

Export Citation Format

Share Document