Mild-to-moderate iodine deficiency in a sample of pregnant women and salt iodine concentration from Zhejiang province, China

2020 ◽  
Vol 42 (11) ◽  
pp. 3811-3818 ◽  
Author(s):  
Zengli Yu ◽  
Canjie Zheng ◽  
Wangfeng Zheng ◽  
Zhongxiao Wan ◽  
Yongjun Bu ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
David Larbi Simpong ◽  
Yaw Asante Awuku ◽  
Kenneth Kwame Kye-Amoah ◽  
Martin Tangnaa Morna ◽  
Prince Adoba ◽  
...  

Background. Iodine deficiency causes maternal hypothyroidism which can lead to growth, cognitive, and psychomotor deficit in neonates, infants, and children. This study examined the iodine status of pregnant women in a periurban setting in Ghana. Methods. This longitudinal study recruited 125 pregnant women by purposeful convenience sampling from the antenatal clinic of the Sefwi Wiawso municipal hospital in Ghana. Urinary iodine concentration (UIC) was estimated by the ammonium persulfate method at an estimated gestational age (EGA) of 11, 20, and 32 weeks. Demographic information, iodized salt usage, and other clinical information were collected using a questionnaire. Results. The prevalence of iodine deficiency among the pregnant women was 47.2% at EGA 11 and 60.8% at both EGA of 20 and 32, whereas only 0.8% of participants not using iodized salt had iodine sufficiency at EGA 32. 18.4%, 20%, and 24% of participants using iodized salt had iodine sufficiency at EGA 11, 20, and 32, respectively. Conclusion. A high prevalence of iodine deficiency was observed among our study cohort.


BMC Nutrition ◽  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Trevor Kaile ◽  
Bornwell Sikateyo ◽  
Masauso M. Phiri ◽  
Charles Michelo

Abstract Background Maternal iodine deficiency is one of the common causes of morbidity and mortality during pregnancy. Maternal iodine deficiency during pregnancy is associated with a number of adverse outcomes such as abortion, stillbirth, congenital anomalies, perinatal mortality and irreversible mental retardation. A study conducted in Zambia among pregnant women in 2013 on the prevalence of iodine deficiency showed that iodine deficiency was not a public health concern. The previous study used Urine Iodine concentration (UIC) as a marker of iodine deficiency among the pregnant women. Our study was conducted to assess the prevalence of iodine deficiency among pregnant women in Gwembe and Sinazongwe districts of Southern Province, Zambia, using urine iodine concentration and goitre presence by manual palpation. Methods We carried out a community based, cross sectional study in rural areas of Gwembe and Sinazongwe districts between April 2016 to March 2018. Data were collected from 412 pregnant women by a multistage cluster sampling technique. The presence of a goitre was examined by manual palpation and urinary iodine concentration was determined by the Ultra Violet Method using PerkinElmer Labda UV Spectrometer equipment made in Jena Germany (Model 107,745). As part of the existing baseline data, we used results of a 2013 countrywide study (n = 489) for household salt iodine content which showed a greater than 40 ppm at 76.2%, between 15 and 40 ppm at 19.21% and less than 15 ppm at 4.59%. Statistical analysis was done using Stata version 14.0. The outputs of analysis are presented as median and Interquartile range (IQR) as the urine data were not normally distributed. Further, the categorical and independent variables were presented as proportions (percentages) to describe the distribution and trends in the target sample population. Results The median Urine Iodine concentration (UIC) of the pregnant women was 150 μg/L (Interquartile Range (IQR): 100–200 μg/L). Based on the UIC, There were 49% pregnant women who had inadequate iodine intake with urine iodine concentration of less than 150 μg/L, 34.0% had UIC of 150–249 μg/L indicating adequate iodine intake, 13.0% with UIC of 250–499 μg/L indicating more than adequate iodine intake, and 5.0% with UIC of above 500 μg/L indicating excessive iodine intake. To determine whether the women had access to iodized salt, we used baseline data from 2013 Zambia national survey for iodine concentration in household salt samples as being an average of 40 ppm, which also showed that 95.41% households consumed adequately iodized salt (≥15 ppm). The prevalence of goitre in our study was very low at 0.02% among the pregnant women of all ages who participated in the study (18–49 years). Conclusion Iodine deficiency was still not a public health concern among the pregnant women of Gwembe and Sinazongwe districts of Southern Province in Zambia. Goitre prevalence has remained very low in this study area. The UIC and goitre observations were consistent with the Zambia National Food and Nutrition Commission findings in 2013 report. However, our study showed more pregnant women with insufficient than adequate iodine status indicating the risk of developing IDD is still high in this region. It also reinforces the argument that strengthening of the existing salt iodization program is needed in order to make a homogenous iodated salt available to the communities. The National Food and Nutrition Commission of Zambia needs to find innovative ways of sensitizing people about the adverse effects of IDDs and how these could be prevented. It is recommended that iodine supplementation be introduced as part of the package of Antenatal clinic care for all pregnant women.


2020 ◽  
Vol 26 (2) ◽  
pp. 63-69
Author(s):  
Scrinic Olesea ◽  
Delia Corina Elena ◽  
Toma Geanina Mirela ◽  
Circo Eduard

Abstract Objective: Assessment of iodine nutritional status in pregnant women in the perimarine area of Romania, a region without iodine deficiency. Adequate iodine intake is the main source for normal thyroid function, ensuring the need for maternal thyroid hormones during pregnancy, but also for the development and growth of children in the fetal and postpartum period. Material and method: Prospective study performed on 74 pregnant women in the first 2 trimesters of pregnancy, originating from the perimarin area. The following indicators of iodine status were analyzed: urinary iodine concentration (UIC), the ratio between urinary iodine concentration and urinary creatinine (UIC/UCr), the prevalence of maternal goiter and the value of neonatal TSH (thyroid stimulating hormone). Results: The mean gestational age was 11 weeks. The ways of iodine intake are: iodized salt - 59.4%, iodized salt and iodine supplements- 23%, only iodine supplements -10.8% and 6.8% consume only non-iodized salt. The median of UIC was 133.03 mcg/l considered insufficient iodine intake (normal in pregnancy UIC >150 mcg/l), but the adjustment of UIC to urinary creatinine reveals a median of 152.83 mcg/g, a value that reflects an adequate iodine intake. The prevalence of goiter was 25.6% characteristic for a moderate iodine deficiency. The prevalence of neonatal TSH >5 mIU/L was registered in 18.8% characteristic of mild iodine deficiency. Conclusions: Monitoring of the iodine nutritional status is recommended for the prevention of disorders due to iodine deficiency under the conditions of universal salt iodization. Perimarine areas considered sufficient in iodine may show variations in iodine status in subpopulations under certain physiological conditions, such as pregnancy. An indicator of iodine status of the population is UIC, but the UIC/UCr ratio may be a more optimal indicator for pregnant women, to avoid possible overestimated results of iodine deficiency in pregnancy.


Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 172 ◽  
Author(s):  
Kristen Hynes ◽  
Judy Seal ◽  
Petr Otahal ◽  
Wendy Oddy ◽  
John Burgess

In Australia, pregnant women are advised to take an iodine supplement (I-supp) (150 µg/day) to reduce risks to the foetus associated with iodine deficiency (ID). To examine the impact of this recommendation on iodine status, and to identify factors that contribute to adequacy during gestation, supplement use and Urinary Iodine Concentration (UIC) was measured in 255 pregnant women (gestation range 6 to 41 weeks) in Tasmania. The median UIC (MUIC) of 133 µg/L (Inter-quartile range 82–233) was indicative of ID, being below the 150–249 µg/L range for adequacy during pregnancy. Women taking an iodine-containing-supplement (I-supp) had a significantly higher MUIC (155 µg/L) (n = 171) compared to the combined MUIC (112.5 µg/L) (n = 84) of those who had never (120 µg/L) (n = 61) or were no longer taking an I-supp (90 µg/L) (n = 23) (p = 0.017). Among women reporting I-supp use, the MUIC of those commencing the recommended 150 µg/day prior to conception was significantly higher than those starting supplementation following pregnancy confirmation: 196 (98–315) µg/L (n = 45) versus 137.5 (82.5–233.5) µg/L (n = 124), p = 0.032. Despite recommendations for iodine supplementation pregnant Tasmanian women remain at risk of ID. Commencing an I-supp of 150 µg/day prior to conception and continuing throughout pregnancy is required to ensure adequacy. Timely advice regarding the importance of adequate iodine nutrition, including supplementation is needed to reduce the risk of irreversible in utero neurocognitive damage to the foetus.


2013 ◽  
Vol 72 (2) ◽  
pp. 226-235 ◽  
Author(s):  
Sarah C. Bath ◽  
Margaret P. Rayman

This review describes historical iodine deficiency in the UK, gives current information on dietary sources of iodine and summarises recent evidence of iodine deficiency and its association with child neurodevelopment. Iodine is required for the production of thyroid hormones that are needed for brain development, particularly during pregnancy. Iodine deficiency is a leading cause of preventable brain damage worldwide and is associated with impaired cognitive function. Despite a global focus on the elimination of iodine deficiency, iodine is a largely overlooked nutrient in the UK, a situation we have endeavoured to address through a series of studies. Although the UK has been considered iodine-sufficient for many years, there is now concern that iodine deficiency may be prevalent, particularly in pregnant women and women of childbearing age; indeed we found mild-to-moderate iodine deficiency in pregnant women in Surrey. As the major dietary source of iodine in the UK is milk and dairy produce, it is relevant to note that we have found the iodine concentration of organic milk to be over 40% lower than that of conventional milk. In contrast to many countries, iodised table salt is unlikely to contribute to UK iodine intake as we have shown that its availability is low in grocery stores. This situation is of concern as the level of UK iodine deficiency is such that it is associated with adverse effects on offspring neurological development; we demonstrated a higher risk of low IQ and poorer reading-accuracy scores in UK children born to mothers who were iodine-deficient during pregnancy. Given our findings and those of others, iodine status in the UK population should be monitored, particularly in vulnerable subgroups such as pregnant women and children.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Djibril Ba ◽  
Paddy Ssentongo ◽  
Guodong Liu ◽  
Ping Du ◽  
Xiang Gao

Abstract Objectives Approximately 2 billion individuals suffer from an insufficient iodine intake, and sub-Saharan Africa is particularly the most affected. We thus conducted a cross-sectional study to assess iodine deficiency status, among women of reproductive age 20–49 years in Tanzania and examine the factors associated with iodine deficiency. Methods The current analysis was based on 3057 women aged 20–49 y who participated the Tanzania Demographic and Health Surveys 2015–2016. Iodine status was assessed using urinary iodine concentration (UIC). Iodine deficiency was defined if UIC was less than 100ug/L. A stepwise multivariable logistic regression to identify the factors associated with iodine deficiency. Potential predicators included age, education level, married status, wealth index, having a prenatal doctor and prenatal nurse, currently pregnant, currently breastfeeding, place of residence, employment status, and history of terminated pregnancy. Results The median UIC among pregnant women (median: 129 μg/L; 25th and 75th percentile: 57.8–240), uneducated women (99.0 μg/L; 48.2–201 μg/L), and poor women (92 μg/L; 43.1 -191 μg/L) were below the recommended ranges (≥150 μg/L for pregnant women and ≥100 μg/L for non-pregnant women) by the World Health Organization. Multivariable logistic stepwise regression showed that women were more likely to be iodine deficient if they were pregnant (aOR 1.55 [95% CI 1.11, 2.15], currently breastfeeding (aOR 1.56 [95% CI 1.28, 1.92], poor (aOR 1.75 [95% CI 1.35, 2.26], uneducated (aOR 1.77 [95% CI 1.26, 2.48], and living in the rural area (aOR 1.79 [95% CI 1.37, 2.34]. Unexpectedly, currently employed women also had significantly higher odds of iodine deficient (aOR 1.41 [95% CI 1.10, 1.80], relative to those without employment. Conclusions There is disparity in UIC among of women of reproductive age 20–49 in Tanzania. Poverty and lack of education appeared to be the driving factors for iodine deficiency. High risk of iodine deficient among pregnant and breastfeeding women appeal for action to implement and enforce universal salt iodization among this vulnerable population in Tanzania. Funding Sources There was no external or internal funding to support this study.


2017 ◽  
Vol 39 (1) ◽  
pp. 49
Author(s):  
Djoko Kartono ◽  
Atmarita Atmarita ◽  
Abas B Jahari ◽  
Soekirman Soekirman ◽  
Doddy Izwardy

Iodine Deficiency Disorders (IDD) are the leading cause of goiter, cretinism, developmental delays and other health problems. Iodine deficiency is an important public health issue as it is a preventable cause of intellectual disability. While elimination of iodine deficiency is imperative, it should be noted that excessive intake of iodine can also lead to adverse health effects. This paper analyzed the iodine status using median urinary iodine concentration (MUIC) of school age children (SAC), women of reproductive age (WRA), and pregnant women (PW) who live in the same household from Riskesdas 2013. The total number of households included in the analysis was 13,811 households, from which 6,149 SAC (aged 6 – 12 years), 13,218 WRA (aged 15-49 years), and 578 PW (aged 15-49 years) were enumerated. The national MUIC of SAC, WRA and PWwas  in the normal range indicated that  the iodine status was adequate using WHO epidemiological criteria. Iodine status in some sub-populations indicated deficiency, however, in terms of geographic characteristics people who live in the urban has better iodine status compared to rural areas. Similarly, populations in richer economic quintiles had better iodine status. Only pregnant women in the 1st and 2nd quintile were deficient. Almost all regions in Indonesia showed the MUIC was in the normal adequate range, except NTT-NTB, Maluku-Papua, and East Java for pregnant women who tend to have lower MUIC (<150 µg/L). The status of iodized salt at the household was detected using both Rapid Test Kit/RTK as well as Titration. The result demonstrated a strong association between salt iodine level and iodine status. The MUIC for all three groups were lower when the iodine level in salt was lower, then increased when the levels of iodine content in salt increased. The iodine status of pregnant women consuming non-iodized salt was inadequate. The detrimental effect of iodine deficiency on the mental and physical development of children as well as on the women of reproductive age has been recognized. Indonesia still needs the salt iodization program to keep the iodine status in the normal range. In particular coverage with adequately iodized salt needs to be improved in order to improve the iodine status of pregnant women. For the prevention of Iodine disorders (insufficient), monitoring should be undertaken in regular basis to assess the MUIC, especially for pregnant women.


2018 ◽  
Vol 14 (3) ◽  
pp. 149-155
Author(s):  
Tatiana V. Mokhort ◽  
Sergei V. Petrenko ◽  
Boris Y. Leushev ◽  
Ekaterina V. Fedorenko ◽  
Natalia D. Kolomiets ◽  
...  

Background. Despite the measures taken by the Government of Belarus, the problem of iodine deficiency among the population remains actual. Aims. To determine iodine sufficiency in children and pregnant women living in Belarus. Materials and methods. The study included 873 schoolchildren aged 9–12 years of both sexes, of which 650 children were in regular schools, and the remaining children in boarding schools. A separate group consisted of 700 practically healthy pregnant women (during gestation from 16 to 36 weeks). Questioning, determination of urinary iodine concentration and thyroid volume with ultrasound was carried out. Results. Urine iodine median was 191 µg/L in the 873 children in 16 regions of Belarus. Thyroid volume corresponds to the normative values in children. According to the survey, 81% of households used iodized salt, constantly – 46%. Indicator of iodine sufficiency of 700 pregnant women (median urinary iodine concentration was 121 µg /l) is a non-optimal for this population group. Conclusions. Currently adequate iodine supplementation in school age children has been achieved. The prevalence of thyroid gland diseases caused by iodine deficiency in children decreased significantly. In pregnant women iodine supply is still insufficient.


Author(s):  
Ilze Konrāde ◽  
Ieva Kalere ◽  
Ieva Strēle ◽  
Marina Makrecka-Kūka ◽  
Vija Veisa ◽  
...  

Abstract In the absence of a mandatory salt iodisation programme, two nationwide cross-sectional cluster surveys revealed persisting iodine deficiency among Latvian schoolchildren during the spring season and a noteworthy iodine deficiency in pregnant women in Latvia; these deficiencies warrant intervention. The consequences of mild-to-moderate iodine deficiency during pregnancy and lactation can adversely affect foetal brain development. Data from a Latvian population survey revealed the consumption of approximately 100 μg of iodine per day through foods and iodised salt. Therefore, strategies to increase the consumption of iodine-containing products should be implemented, particularly for children. In addition, to meet the increased iodine requirement during pregnancy, pregnant women should take daily supplements containing 150 μg iodine from the earliest time possible. All women of childbearing age should be advised to increase their dietary iodine intake by using iodised table salt and iodine-rich products: seafood, milk and milk products. For women with pre-existing thyroid pathologies, the medical decision should be considered on a case-by-case basis. Urinary iodine concentration monitoring among schoolchildren and pregnant women and neonatal thyrotropin registry analysis every five years would be an appropriate strategy for maintaining iodine intake within the interval that prevents iodine deficiency disorders.


Sign in / Sign up

Export Citation Format

Share Document