Large-Scale Water Spray and Water Mist Fire Suppression System Tests for the Protection of Ro–Ro Cargo Decks on Ships

2012 ◽  
Vol 50 (3) ◽  
pp. 589-610 ◽  
Author(s):  
Magnus Arvidson
2021 ◽  
Vol 15 (2) ◽  
Author(s):  
Wira Setiawan ◽  
Distyan Kotanjungan

Based on statistical data in recent years, there are still quite a number of ship accidents due to fires, including on passenger ships. The water mist system is a fire suppression system that allows it to be used in the engine room with the advantage that it can keep the heat production rate low during the extinguishing process and can be operated earlier than the CO2 system. The research is conducted by using fire dynamic simulator in the engine room of a 300 GT ferry ro-ro passenger to compare the heat release rate of fire without an extinguishing system, an existing CO2 system, and a water mist system. The result shows that the CO2 fire suppression system reduces the heat release rate more rapidly to the decay phase at 375 seconds while the water mist takes more than 900 seconds. However, the fully developed phase of the water mist suppression system occurs more quickly than CO2 because the sprinklers are activated shortly after a fire occurs. Unlike water mist, the CO2 system is activated at 60 seconds so that the pre-combustion, growth, flashover, and fully developed phases are at the same HRR and time as the natural one.


2011 ◽  
Vol 14 (2) ◽  
Author(s):  
Danardono A. Sumarsono ◽  
Yulianto S. Nugroho ◽  
Mariance , ◽  
I Gede Wahyu W. Ariasa

2017 ◽  
Vol 170 ◽  
pp. 344-351 ◽  
Author(s):  
Fitri Pancawardani ◽  
Dwi Arini ◽  
Randy Putra Yunindar ◽  
Mohamad Lutfi Ramadhan ◽  
Fahri Ali Imran ◽  
...  

2016 ◽  
Vol 8 (1) ◽  
pp. 213-224
Author(s):  
Norbert Tuśnio ◽  
Paweł Wolny

An example of modern water mist extinguishing technology is presented in the article. Water mist systems are firefighting systems which uses very fine water sprays. The smallest water droplets allow a water mist to control, suppress or extinguish fires by cooling both the flame and hot gases by evaporation, displacing oxygen by evaporation and reducing radiant heat through the small droplets themselves. The effectiveness of water mist systems in fire suppression depends on its spray characteristics, which include the droplet size and distribution, flux density and spray dynamics, phase of fire development, fire size and the ventilation conditions. The COBRA (known as PyroLance in USA) systems presented use of a cutting extinguisher is a fire extinguishing technique that combines abrasive waterjet cutting with water spray extinguishing, through a single handpiece or nozzle. The firefighter approaches the fire from outside the main fire area, then uses the cutting action to drill a small hole through a barrier such as a door, wall, roof or floor. Switching to a water spray then allows the fire to be fought, as with a conventional fog nozzle. An analysis of the benefits of using high-pressure water mist in conjunction with new firefighting tactics is described. State Fire Service should aim to minimize water consumption and thus reduce the post-fire losses, take care of environmental protection and improve safety conditions for firefighters.


2008 ◽  
Author(s):  
Kai Xu ◽  
Wen-Qiang Lu

In the research of the mechanism of water mist fire suppression, thermal buoyancy has important effects on smoke movement and temperature distribution, but the effects of the smoke diffusion are less considered. In this paper, a computational method couple dual reciprocity boundary element method (DRBEM) with finite volume method (FVM) is developed to study the thermal and smoke diffusion effects on the smoke movement, temperature and CO2 concentration distribution. And the interaction between the smoke and a water spray is calculated using FVM with the PSIC scheme. The DRBEM is employed to calculate the inner temperature of the droplet and radius variation, and the results show that when the droplet radius less than 1mm, the uniformly temperature assumption is reasonable. Numerical results also show the gradients of temperature and smoke concentration drive double-diffusive convection have different effects on the smoke temperature and CO2 concentration with and without water spray.


Sign in / Sign up

Export Citation Format

Share Document