Effects of Ambient Parameters and Sample Width on Upward Flame Spread over Thermally Thin Solids

2020 ◽  
Author(s):  
Luyao Zhao ◽  
Jun Fang ◽  
Shangqing Tao ◽  
Jingwu Wang ◽  
Yongming Zhang
2016 ◽  
Vol 705 ◽  
pp. 114-118 ◽  
Author(s):  
Fei Peng ◽  
Li Zhong Yang ◽  
Xiao Dong Zhou

A series of experiments was designed to investigate the effects of ceiling on upward flame spread. The result reveals that the ceiling accelerates the burning rate of upward flame under certain situations. And the acceleration is slightly increase with the increasing sample length, but almost keeps the same with different sample width. The heat release rate per unit area nearly keeps the same for the series work with ceiling or the series work without ceiling. But the heat release rate per unit area between the two series is obvious, the heat release rate per unit area with ceiling is much higher than the ones without ceiling.


2020 ◽  
Vol 22 ◽  
pp. 100794
Author(s):  
Weiguang An ◽  
Xiangwei Yin ◽  
Minglun Cai ◽  
Yanhua Tang ◽  
Qing Li ◽  
...  

Author(s):  
Biao Zhou ◽  
Kai Wang ◽  
Yanyi Liuchen ◽  
Yuhang Li ◽  
Xukun Sun ◽  
...  

2014 ◽  
Vol 664 ◽  
pp. 199-203 ◽  
Author(s):  
Wei Guang An ◽  
Lin Jiang ◽  
Jin Hua Sun ◽  
K.M. Liew

An experimental study on downward flame spread over extruded polystyrene (XPS) foam at a high elevation is presented. The flame shape, flame height, mass loss rate and flame spread rate were measured. The influences of width and high altitude were investigated. The flame fronts are approximately horizontal. Both the intensity of flame pulsation and the average flame height increase with the rise of sample width. The flame spread rate first drops and then rises with an increase in width. The average flame height, mass loss rate and flame spread rate at the higher elevation is smaller than that at a low elevation, which demonstrates that the XPS fire risk at the higher elevation area is lower. The experimental results agree well with the theoretical analysis. This work is vital to the fire safety design of building energy conservation system.


2014 ◽  
Vol 39 (2) ◽  
pp. 127-138 ◽  
Author(s):  
Y. Zhou ◽  
H. H. Xiao ◽  
J. H. Sun ◽  
X. N. Zhang ◽  
W. G. Yan ◽  
...  

2017 ◽  
Vol 23 (4) ◽  
pp. 455-463 ◽  
Author(s):  
Weigang YAN ◽  
Lin JIANG ◽  
Weiguang AN ◽  
Yang ZHOU ◽  
Jinhua SUN

Buildings have U-shape façade designs for certain purposes such as lighting. However, such designs may lead to a higher fire hazard. In this paper, large scale experiments of upward flame spread over XPS insulation material were conducted to investigate the fire hazard of building’s U-shape façade wall geometry. Comparison to previous labora­tory scale experiments were also presented. Theoretical analysis was performed to reveal the mechanism of the U-shape geometry’s influences. It is found that such geometry design would increase the fire hazard of buildings: flame spread rate and flame height increased with U-shape’s geometrical factor. The results agreed with theoretical analysis. It is ex­pected that the buildings’ U-shape façade wall geometry would greatly benefit flame spread for full scale applications and increase the fire hazard. Thus engineers should be careful with such façade wall designs, especially for residential building designs.


2013 ◽  
Vol 28 (1) ◽  
pp. 111-127 ◽  
Author(s):  
Weiguang An ◽  
Xinjie Huang ◽  
Qingsong Wang ◽  
Ying Zhang ◽  
Jinhua Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document