scholarly journals Physio-metabolic response of rainbow trout during prolonged food deprivation before slaughter

2018 ◽  
Vol 45 (1) ◽  
pp. 253-265 ◽  
Author(s):  
Rubén Bermejo-Poza ◽  
Montserrat Fernández-Muela ◽  
Jesús De la Fuente ◽  
Concepción Pérez ◽  
Elisabet González de Chavarri ◽  
...  
Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 219 ◽  
Author(s):  
Beatriz Cuevas-Fernández ◽  
Carlos Fuentes-Almagro ◽  
Juan Peragón

Long-term starvation provokes a metabolic response in the brain to adapt to the lack of nutrient intake and to maintain the physiology of this organ. Here, we study the changes in the global proteomic profile of the rat brain after a seven-day period of food deprivation, to further our understanding of the biochemical and cellular mechanisms underlying the situations without food. We have used two-dimensional electrophoresis followed by mass spectrometry (2D-MS) in order to identify proteins differentially expressed during prolonged food deprivation. After the comparison of the protein profiles, 22 brain proteins were found with altered expression. Analysis by peptide mass fingerprinting and MS/MS (matrix-assisted laser desorption-ionization-time of flight mass spectrometer, MALDI-TOF/TOF) enabled the identification of 14 proteins differentially expressed that were divided into 3 categories: (1) energy catabolism and mitochondrial proteins; (2) chaperone proteins; and (3) cytoskeleton, exocytosis, and calcium. Changes in the expression of six proteins, identified by the 2D-MS proteomics procedure, were corroborated by a nanoliquid chromatography-mass spectrometry proteomics procedure (nLC-MS). Our results show that long-term starvation compromises essential functions of the brain related with energetic metabolism, synapsis, and the transmission of nervous impulse.


2008 ◽  
Vol 156 (2) ◽  
pp. 410-417 ◽  
Author(s):  
Rosa M. Ceinos ◽  
Sergio Polakof ◽  
Arnau Rodríguez Illamola ◽  
José L. Soengas ◽  
Jesús M. Míguez

2012 ◽  
Vol 109 (5) ◽  
pp. 816-826 ◽  
Author(s):  
A. Cláudia Figueiredo-Silva ◽  
Subramanian Saravanan ◽  
Johan W. Schrama ◽  
Stéphane Panserat ◽  
Sadasivam Kaushik ◽  
...  

Metabolic mechanisms underlying the divergent response of rainbow trout (Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus) to changes in dietary macronutrient composition were assessed. Fish were fed one of four isoenergetic diets having a digestible protein-to-digestible energy (DP:DE) ratio above or below the optimal DP:DE ratio for both species. At each DP:DE ratio, fat was substituted by an isoenergetic amount of digestible starch as the non-protein energy source (NPE). Dietary DP:DE ratio did not affect growth and only slightly lowered protein gains in tilapia. In rainbow trout fed diets with low DP:DE ratios, particularly with starch as the major NPE source, growth and protein utilisation were highly reduced, underlining the importance of NPE source in this species. We also observed species-specific responses of enzymes involved in amino acid catabolism, lipogenesis and gluconeogenesis to dietary factors. Amino acid transdeamination enzyme activities were reduced by a low dietary DP:DE ratio in both species and in tilapia also by the substitution of fat by starch as the NPE source. Such decreased amino acid catabolism at high starch intakes, however, did not lead to improved protein retention. Our data further suggest that a combination of increased lipogenic and decreased gluconeogenic enzyme activities accounts for the better use of carbohydrates and to the improved glycaemia control in tilapia compared with rainbow tront fed starch-enriched diets with low DP:DE ratio.


Aquaculture ◽  
2018 ◽  
Vol 495 ◽  
pp. 161-171 ◽  
Author(s):  
Esmail Lutfi ◽  
Ningping Gong ◽  
Marcus Johansson ◽  
Albert Sánchez-Moya ◽  
Björn Thrandur Björnsson ◽  
...  

2001 ◽  
Vol 204 (2) ◽  
pp. 269-281 ◽  
Author(s):  
F. Hervant ◽  
J. Mathieu ◽  
J. Durand

The effects of long-term starvation and subsequent refeeding on haematological variables, behaviour, rates of oxygen consumption and intermediary and energy metabolism were studied in morphologically similar surface- and cave-dwelling salamanders. To provide a hypothetical general model representing the responses of amphibians to food stress, a sequential energy strategy has been proposed, suggesting that four successive phases (termed stress, transition, adaptation and recovery) can be distinguished. The metabolic response to prolonged food deprivation was monophasic in the epigean Euproctus asper (Salamandridae), showing an immediate, linear and large decrease in all the energy reserves. In contrast, the hypogean Proteus anguinus (Proteidae) displayed successive periods of glucidic, lipidic and finally lipido-proteic-dominant catabolism during the course of food deprivation. The remarkable resistance to long-term fasting and the very quick recovery from nutritional stress of this cave organism may be explained partly by its ability to remain in an extremely prolonged state of protein sparing and temporary torpor. Proteus anguinus had reduced metabolic and activity rates (considerably lower than those of most surface-dwelling amphibians). These results are interpreted as adaptations to a subterranean existence in which poor and discontinuous food supplies and/or intermittent hypoxia may occur for long periods. Therefore, P. anguinus appears to be a good example of a low-energy-system vertebrate.


Sign in / Sign up

Export Citation Format

Share Document