scholarly journals Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China

2016 ◽  
Vol 15 (12) ◽  
pp. 2886-2898 ◽  
Author(s):  
Xiu-wei LIU ◽  
Til Feike ◽  
Su-ying CHEN ◽  
Li-wei SHAO ◽  
Hong-yong SUN ◽  
...  
2012 ◽  
Vol 76 (1) ◽  
pp. 286-297 ◽  
Author(s):  
Shaojun Qiu ◽  
Xiaotang Ju ◽  
Xing Lu ◽  
Ling Li ◽  
Joachim Ingwersen ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zheng Liu ◽  
Ningning Yu ◽  
James J. Camberato ◽  
Jia Gao ◽  
Peng Liu ◽  
...  

AbstractIn pursuit of maximum grain yield farmers in the North China Plain usually apply excessive N fertilizer, resulting in wasted resources and environmental pollution. To assess the economic and environmental performances of different nitrogen rates will be conductive to sustain cleaner crop production. An 8-year field experiment was carried out with four treatments, N0 (0 kg ha−1 for winter wheat and summer maize), N1 (168 kg ha−1 for winter wheat and 129 kg ha−1 for summer maize), N2 (240 kg ha−1 for winter wheat and 185 kg ha−1 for summer maize) and N3 (300 kg ha−1 for winter wheat and summer maize), on the double cropping at Dawenkou research field (36°11’N, 117°06’E), Shandong Province, China. The crop production, soil physical-chemical parameters, and greenhouse gas emission are measured and the economic and environmental performances are assessed. The optimal nitrogen rate obtained the highest grain yield of summer maize in 4 of 8 year and was equivalent to conventional N rate in the other years. The nitrogen partial factor productivity and agronomic efficiency of optimal nitrogen rate was 63% and 58% higher than that of conventional nitrogen rate. The optimal nitrogen rate effectively decreased soil bulk density and increased weight percentage of water-stable aggregate and activities of urease and invertase compared to conventional nitrogen rate, which improved soil productivity. The fertilizer nitrogen loss and global warming potential of optimal nitrogen rate reduced by 76% and 35% compared to conventional nitrogen rate. The annual greenhouse gas intensity of optimal nitrogen rate decreased by 14–35% compared to others. The net ecosystem economic budget under optimal nitrogen rate is 252–604 $ ha−1 yr.−1 higher than other addition levels. The optimal nitrogen rate produces more grains and obtains higher economic and environmental benefits.


2020 ◽  
Vol 12 (11) ◽  
pp. 4588
Author(s):  
Huanyuan Wang ◽  
Baoguo Li ◽  
Liang Jin ◽  
Kelin Hu

The North China Plain (NCP) is one of the most important grain production regions in China. However, it currently experiences water shortage, severe nonpoint source pollution, and low water and N use efficiencies (WUE and NUE). To explore sustainable agricultural development in this region, a field experiment with different cropping systems was conducted in suburban Beijing. These cropping systems included a winter wheat and summer maize rotation system for one year (WM), three harvests (winter wheat-summer maize-spring maize) in two years (HT), and continuous spring maize monoculture (CS). Novel ways were explored to improve WUE and NUE and to reduce N loss via the alternative cropping system based on the simulation results of a soil-crop system model. Results showed that the annual average yields were ranked as follows: WM > HT > CS. The N leaching of WM was much larger than that of HT and CS. WUE and NUE were ranked as follows: WM < HT < CS. Comprehensive evaluation indices based on agronomic and environmental effects indicated that CS or HT have significant potential for approaches characterized by water-saving, fertilizer-saving, high-WUE, and high-NUE properties. Once spring maize yield reached an ideal level HT and CS became a high-yield, water-saving, and fertilizer-saving cropping systems. Therefore, this method would be beneficial to sustainable agricultural development in the NCP.


2019 ◽  
Vol 45 (4) ◽  
pp. 589 ◽  
Author(s):  
Bao-Yuan ZHOU ◽  
Wei MA ◽  
Xue-Fang SUN ◽  
Zai-Song DING ◽  
Cong-Feng LI ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 696 ◽  
Author(s):  
Shah Jahan Leghari ◽  
Kelin Hu ◽  
Hao Liang ◽  
Yichang Wei

The North China Plain (NCP) is experiencing serious groundwater level decline and groundwater nitrate contamination due to excessive water pumping and application of nitrogen (N) fertilizer. In this study, grain yield, water and N use efficiencies under different cropping systems including two harvests in 1 year (winter wheat–summer maize) based on farmer (2H1Y)FP and optimized practices (2H1Y)OPT, three harvests in 2 years (winter wheat–summer maize–spring maize, 3H2Y), and one harvest in 1 year (spring maize, 1H1Y) were evaluated using the water-heat-carbon-nitrogen simulator (WHCNS) model. The 2H1YFP system was maintained with 100% irrigation and fertilizer, while crop water requirement and N demand for other cropping systems were optimized and managed by soil testing. In addition, a scenario analysis was also performed under the interaction of linearly increasing and decreasing N rates, and irrigation levels. Results showed that the model performed well with simulated soil water content, soil N concentration, leaf area index, dry matter, and grain yield. Statistically acceptable ranges of root mean square error, Nash–Sutcliffe model efficiency, index of agreement values close to 1, and strong correlation coefficients existed between simulated and observed values. We concluded that replacing the prevalent 2H1YFP with 1H1Y would be ecofriendly at the cost of some grain yield decline. This cropping system had the highest average water use (2.1 kg m−3) and N use efficiencies (4.8 kg kg–1) on reduced water (56.64%) and N (81.36%) inputs than 2H1YFP. Whereas 3H2Y showed insignificant results in terms of grain yield, and 2H1YFP was unsustainable. The 2H1YFP system consumed a total of 745 mm irrigation and 1100 kg N ha–1 in two years. When farming practices were optimized for two harvests in 1 year system (2H1Y)OPT, then grain yield improved and water (18.12%) plus N (61.82%) consumptions were minimized. There was an ample amount of N saved, but water conservation was still unsatisfactory. However, considering the results of scenario analyses, it is recommended that winter wheat would be cultivated at <200 mm irrigation by reducing one irrigation event.


Sign in / Sign up

Export Citation Format

Share Document