Nitrogen loss by surface runoff from different cropping systems

Soil Research ◽  
2012 ◽  
Vol 50 (1) ◽  
pp. 58 ◽  
Author(s):  
P. Jiao ◽  
D. Xu ◽  
S. Wang ◽  
Y. Wang ◽  
K. Liu ◽  
...  

Reducing nitrogen (N) loss from agricultural soils as surface runoff is essential to prevent surface water contamination. The objective of 3-year study, 2007–09, was to evaluate surface runoff and N loss from different cropping systems. There were four treatments, including one single-crop cropping system with winter wheat (Triticum aestivum L.) followed by summer fallow (wheat/fallow), and three double-cropping systems: winter wheat/corn (Zea mays L.), wheat/cotton (Gossypium hirsutum L.), and wheat/soybean (Glycine max L. Merrill). The wheat/fallow received no fertiliser in the summer fallow period. The four cropping systems were randomly assigned to 12 plots of 5 m by 2 m on a silty clay soil. Lower runoff was found in the three double-cropping systems than the wheat/fallow, with the lowest runoff from the wheat/soybean. The three double-cropping systems also substantially reduced losses of ammonium-N (NH4+-N), nitrate-N (NO3–-N), dissolved N (DN), and total N (TN) compared with the wheat/fallow. Among the three double-cropping systems, the highest losses of NO3–-N, DN, and TN were from the wheat/cotton, and the lowest losses were from the wheat/soybean. However, the wheat/soybean increased NO3–-N and DN concentrations compared with wheat/fallow. The losses in peak events accounted for >64% for NH4+-N, 58% for NO3–-N, and 41% for DN of the total losses occurring during the 3-year experimental period, suggesting that peak N-loss events should be focussed on for the control of N loss as surface runoff from agricultural fields.

2020 ◽  
Vol 56 (3) ◽  
pp. 422-439
Author(s):  
Guoping Wang ◽  
Yabing Li ◽  
Yingchun Han ◽  
Zhanbiao Wang ◽  
Beifang Yang ◽  
...  

AbstractThe cotton-wheat double-cropping system is widely used in the Yellow River Valley of China, but whether and how different planting patterns within cotton-wheat double-cropping systems impact heat and light use efficiency have not been well documented. A field experiment investigated the effects of the cropping system on crop productivity and the capture and use efficiency of heat and light in two fields differing in soil fertility. Three planting patterns, namely cotton intercropped with wheat (CIW), cotton directly seeded after wheat (CDW), and cotton transplanted after wheat (CTW), as well as one cotton monoculture (CM) system were used. Cotton-wheat double cropping significantly increased crop productivity and land equivalent ratios relative to the CM system in both fields. As a result of increased growing degree days (GDD), intercepted photosynthetically active radiation (IPAR), and photothermal product (PTP), the capture of light and heat in the double-cropping systems was compared with that in the CM system in both fields. With improved resource capture, the double-cropping systems exhibited a higher light and heat use efficiency according to thermal product efficiency, solar energy use efficiency (Eu), radiation use efficiency (RUE), and PTP use efficiency (PTPU). The cotton lint yield and biomass were not significantly correlated with RUE across cropping patterns, indicating that RUE does not limit cotton production. Among the double-cropping treatments, CDW had the lowest GDD, IPAR, and PTP values but the highest heat and light resource use efficiency and highest overall resource use efficiency. This good performance was even more obvious in the high-fertility field. Therefore, we encourage the expanded use of CDW in the Yellow River Valley, especially in fields with high fertility, given the high productivity and resource use efficiency of this system. Moreover, the use of agronomic practices involving a reasonably close planting density, optimized irrigation and nutrient supply, and the application of new short-season varieties of cotton or wheat can potentially enhance CDW crop yields and productivity.


2011 ◽  
Vol 347-353 ◽  
pp. 2302-2307 ◽  
Author(s):  
Hong Xiang Wang ◽  
Yi Shi ◽  
Jian Ma ◽  
Cai Yan Lu ◽  
Xin Chen

A field experiment was conducted to study the characteristics of non-point source nitrogen (N) in the surface runoff from sloping croplands and the influences of rainfall and cropland slope gradient. The results showed that dissolved total N (DTN) was the major form of N in the runoff, and the proportion occupied by dissolved inorganic nitrogen (DIN) ranged from 45% to 85%. The level of NH4+-N was generally higher than the level of NO3--N, and averaged at 2.50 mg·L-1and 1.07 mg·L-1respectively. DIN was positively correlated with DTN (R2=0.962). Dissolved organic N (DON) presented a moderate seasonal change and averaged at 1.40 mg·L-1. Rainfall amount and rainfall intensity significantly affected the components of DTN in the runoff. With the increase of rainfall amount and rainfall intensity, the concentrations of DTN, NH4+-N and NO3--N presented a decreased trend, while the concentration of DON showed an increased trend. N loss went up with an increase in the gradient of sloping cropland, and was less when the duration was longer from the time of N fertilization.fertilization.


2009 ◽  
Vol 86 (3) ◽  
pp. 301-315 ◽  
Author(s):  
Xiao Qin Dai ◽  
Hong Yan Zhang ◽  
J. H. J. Spiertz ◽  
Jun Yu ◽  
Guang Hui Xie ◽  
...  

2012 ◽  
Vol 29 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Drew J. Lyon ◽  
Gary W. Hergert

AbstractOrganic farming systems use green and animal manures to supply nitrogen (N) to their fields for crop production. The objective of this study was to evaluate the effect of green manure and composted cattle manure on the subsequent winter wheat (Triticum aestivumL.) crop in a semiarid environment. Dry pea (Pisum sativumL.) was seeded in early April and terminated at first flower in late June. Composted cattle manure was applied at 0, 11.2 or 22.5 Mg ha−1just prior to pea termination. Winter wheat was planted in mid September following the green manure or tilled summer fallow. No positive wheat response to green manure or composted cattle manure was observed in any of the 3 years of the study. In 2 of the 3 years, wheat yields and grain test weight were reduced following green manure. Green manure reduced grain yields compared with summer fallow by 220 and 1190 kg ha−1in 2009 and 2010, respectively. This may partially be explained by 40 and 47 mm less soil water at wheat planting following peas compared with tilled summer fallow in 2008 and 2009, respectively. Also, in 2008 and 2009, soil nitrate level averaged 45 kg ha−1higher for black fallow compared with green manure fallow when no compost was added. Organic growers in the semiarid Central Great Plains will be challenged to supply N fertility to their winter wheat crop in a rapid and consistent manner as a result of the inherently variable precipitation. Growers may need to allow several years to pass before seeing the benefits of fertility practices in their winter wheat cropping systems.


2018 ◽  
Vol 64 (No. 4) ◽  
pp. 156-163
Author(s):  
Wang Dapeng ◽  
Zheng Liang ◽  
Gu Songdong ◽  
Shi Yuefeng ◽  
Liang Long ◽  
...  

Excessive nitrogen (N) and water input, which are threatening the sustainability of conventional agriculture in the North China Plain (NCP), can lead to serious leaching of nitrate-N (NO<sub>3</sub><sup>–</sup>-N). This study evaluates grain yield, N and water consumption, NO<sub>3</sub><sup>–</sup>-N accumulation and leaching in conventional and two optimized winter wheat-summer maize double-cropping systems and an organic alfalfa-winter wheat cropping system. The results showed that compared to the conventional cropping system, the optimized systems could reduce N, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching by 33, 35 and 67–74%, respectively, while producing nearly identical grain yields. In optimized systems, soil NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was about 80 kg N/ha most of the time. In the organic system, N input, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching was reduced even more (by 71, 43 and 92%, respectively, compared to the conventional system). However, grain yield also declined by 46%. In the organic system, NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was generally less than 30 kg N/ha. The optimized systems showed a considerable potential to reduce N and water consumption and NO<sub>3</sub><sup>–</sup>-N leaching while maintaining high grain yields, and thus should be considered for sustainable agricultural development in the NCP.  


Author(s):  
Laura Masilionytė ◽  
Stanislava Maikštėnienė ◽  
Aleksandras Velykis ◽  
Antanas Satkus

The paper presents the research conducted at the Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry on a clay loam Gleyic Cambisol during the period of 2006–2010. The research investigated the changes of mineral nitrogen in soil growing catch crops during the winter wheat post-harvest period and incorporating their biomass into the soil for green manure. Green manure implications for environmental sustainability were assessed. The studies were carried out in the soil with a low (1.90–2.00%) and moderate (2.10–2.40%) humus content in organic and sustainable cropping systems. The crop rotation, expanded in time and space, consisted of red clover (Trifolium pretense L.) → winter wheat (Triticum aestivum L.) → field pea (Pisum sativum L.) → spring barley (Hordeum vulgare L.) with undersown red clover. Investigations of mineral nitrogen migration were assessed in the crop rotation sequence: winter wheat + catch crops → field pea. Higher organic matter and nitrogen content in the biomass of catch crops were accumulated when Brassisaceae (white mustard, Sinapis alba L.) was grown in a mixture with buckwheat (Fagopyrum esculentum Moench.) or as a sole crop, compared with oilseed radish (Raphanus sativus var. Oleiferus Metzg.) grown with the long-day legume plants blue lupine (Lupinus angustifolius L.). Mineral nitrogen concentration in soil depended on soil humus status, cropping system and catch crop characteristics. In late autumn there was significantly higher mineral nitrogen concentration in the soil with moderate humus content, compared with soil with low humus content. The lowest mineral nitrogen concentration in late autumn in the 0–40 cm soil layer and lower risk of leaching into deeper layers was measured using organic cropping systems with catch crops. The highest mineral nitrogen concentration was recorded in the sustainable cropping system when mineral nitrogen fertilizer (N30) was applied for winter wheat straw decomposition. In the organic cropping system, the incorporation of catch crop biomass into soil resulted in higher mineral nitrogen reserves in soil in spring than in the sustainable cropping system, (mineral nitrogen fertilizer (N30) applied for straw decomposition in autumn and no catch crop grown). Applying organic cropping systems with catch crops is an efficient tool to promote environmental sustainability.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mark A. Liebig ◽  
David W. Archer ◽  
Don L. Tanaka

Unprecedented changes in agricultural land use throughout the northern Great Plains of North America have highlighted the need to better understand the role of crop diversity to affect ecosystem services derived from soil. This study sought to determine the effect of four no-till cropping systems differing in rotation length and crop diversity on near-surface (0 to 10 cm) soil properties. Cropping system treatments included small grain-fallow (SG-F) and three continuously cropped rotations (3 yr, 5 yr, and Dynamic) located in south-central North Dakota, USA. Soil pH was lower in the 3 yr rotation (5.17) compared to the Dynamic (5.51) and SG-F (5.55) rotations(P≤0.05). Among cropping system treatments, 5 yr and Dynamic rotations possessed significantly greater soil organic C (SOC) and total N (mean = 26.3 Mg C ha−1, 2.5 Mg N ha−1) compared to the 3 yr (22.7 Mg C ha−1, 2.2 Mg N ha−1) and SG-F (19.9 Mg C ha−1, 2.0 Mg N ha−1) rotations(P≤0.05). Comparison of SOC measured in this study to baseline values at the research site prior to the establishment of treatments revealed only the 5 yr and Dynamic rotations increased SOC over time. The results of this study suggest that a diverse portfolio of crops is necessary to minimize soil acidification and increase SOC.


2012 ◽  
Vol 76 (1) ◽  
pp. 286-297 ◽  
Author(s):  
Shaojun Qiu ◽  
Xiaotang Ju ◽  
Xing Lu ◽  
Ling Li ◽  
Joachim Ingwersen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document