One-Dimensional Compression Creep Characteristics of Light Weight Soil Mixed with Weihe River Mud and EPS Particles

Author(s):  
Tian-shun Hou ◽  
Wu-guang Ma ◽  
Kai-xuan Yang
2016 ◽  
Vol 53 (10) ◽  
pp. 1583-1599 ◽  
Author(s):  
David Kurz ◽  
Jitendra Sharma ◽  
Marolo Alfaro ◽  
Jim Graham

Clays exhibit creep in compression and shear. In one-dimensional compression, creep is commonly known as “secondary compression” even though it is also a significant component of deformations resulting from shear straining. It reflects viscous behaviour in clays and therefore depends on load duration, stress level, the ratio of shear stress to compression stress, strain rate, and temperature. Research described in the paper partitions strains into elastic (recoverable) and plastic (nonrecoverable) components. The plastic component includes viscous strains defined by a creep rate coefficient ψ that varies with plasticity index and temperature (T), but not with stress level or overconsolidation ratio (OCR). Earlier elastic–viscoplastic (EVP) models have been modified so that ψ = ψ(T) in a new elastic–thermoviscoplastic (ETVP) model. The paper provides a sensitivity analysis of simulated results from undrained (CIŪ) triaxial compression tests for normally consolidated and lightly overconsolidated clays. Axial strain rates range from 0.15%/day to 15%/day, and temperatures from 28 to 100 °C.


2016 ◽  
Vol 34 (4) ◽  
pp. 1193-1198 ◽  
Author(s):  
Wei-yao Guo ◽  
Yun-liang Tan ◽  
Tong-bin Zhao ◽  
Xiao-ming Liu ◽  
Qing-heng Gu ◽  
...  

1999 ◽  
Vol 36 (4) ◽  
pp. 754-759 ◽  
Author(s):  
DFE Stolle ◽  
P A Vermeer ◽  
P G Bonnier

A nonlinear theory of consolidation is presented which takes into account secondary compression. The theory is incorporated into a weak form of equilibrium that is suitable for a finite element procedure. The model is used to interpret Crawford's experimental data on Leda clay. Limitations of the model are discussed, and a few thoughts on the effects of temperature on the evaluation of model parameters are briefly presented.Key words: secondary compression, creep, one-dimensional consolidation, modelling.


2021 ◽  
Author(s):  
Jiabing Zhang ◽  
Xiaohu Zhang ◽  
Zhen Huang ◽  
Helin Fu

Abstract The layered surrounding rocks of deep tunnels undergo large creep deformation due to the presence of planes of weakness and the presence of prolonged high in-situ stress, thereby the deformation severely endangers the safety of tunnels. This study conducts uniaxial compression creep tests to experimentally investigate the transversely isotropic creep characteristics and the damage mechanism of layered phyllite samples having bedding angles of 0°, 22.5°, 45°, 67.5°, and 90°. The results indicate that the creep deformation of the specimens takes place in four stages: the instantaneous elastic deformation stage, the deceleration creep stage, the steady-state creep stage, and the accelerated creep stage. The cumulative creep deformation and the creep time during the steady-state creep stage of the specimens initially decrease and then increase as the bedding angle changes from 0° to 90°, thereby, corresponding to the initial increase and subsequent decrease in creep rate during the deceleration creep stage. Based on the existing viscoelastic-plastic damage creep model, the creep parameters E1, E2, η2, and η3 are observed to initially decrease and then increase with the increase in bedding angle, hence demonstrating that the creep characteristics and damage mechanism of the layered rock mass are controlled by the effect of the natural weakness planes and show significant transversely isotropic characteristics.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jun Feng ◽  
Yue Ma ◽  
Zaobao Liu

The present study takes the ratio of the matric suction to the net vertical stress and the ratio of the matric suction to the net mean stress as new unsaturated stress levels f and F , respectively. Based on the laboratory tests and theoretical derivation, the modified one-dimensional Mesri creep model and three-dimensional creep model were established, which takes the unsaturated stress level into account. Then, the one-dimensional and three-dimensional creep characteristics of the unsaturated viscous subsoil of an airport under different unsaturated stress levels were analyzed. The following conclusions could be drawn: (1) under different stress levels, the one-dimensional creep deformation of unsaturated soil has a power function relationship with time, and the change rate exponentially decreases with the stress level, which can be well-expressed by the proposed modified one-dimensional Mesri creep model; (2) under different stress levels, the three-dimensional creep strain of the unsaturated soil shows a hyperbolic curve with time and a near-linear relationship at the semilogarithmic coordinate, which can be well-expressed by the proposed modified three-dimensional creep model; (3) under different stress levels, both the one-dimensional creep and three-dimensional creep of the unsaturated soil can be divided into two stages, which are the accelerated creep stage and stable creep stage.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Rongbin Huang ◽  
Shuangming Wang ◽  
Shuancheng Gu ◽  
Zhengjun Mao

When the traditional one-dimensional consolidator is used to study the creep characteristics of loess, due to the hoop effect of the ring cutter, only the attenuation creep stage and stable creep stage of loess can be studied, but the accelerated creep stage cannot be presented. In order to avoid the influence of drilling on the creep characteristics of loess, the paper improves the consolidation instrument by drilling holes along the diameter direction in the center of the sample to provide artificial space for soil failure. At the same time, the sample size is increased to ensure that the diameter of the sample is greater than five times of the diameter of the borehole, so as to avoid the influence of drilling on the creep characteristics of loess. The creep characteristics of loess are studied by step loading (vertical pressure at all levels is 125 kPa, 175 Pa, 225 kPa, and 275 kPa), and the whole creep process characteristic curves of loess under different stress conditions are obtained. An endoscope was placed in the hole to observe the deformation and failure characteristics of loess in different stages of creep. This method makes up for the defect that the traditional one-dimensional consolidator cannot obtain the whole process characteristics of loess creep. At the same time, it has the advantages of simple operation, less external influence factors, stronger data reliability, and can directly observe the changes of loess creep soil. It has a beneficial role in promoting the experimental research of loess creep characteristics.


1994 ◽  
Vol 31 (1) ◽  
pp. 42-52 ◽  
Author(s):  
Jian-Hua Yin ◽  
James Graham

This paper describes the recent concept of equivalent time and how it can be used in a revised version of an earlier elastic viscoplastic model for one-dimensional straining of clays. It clarifies how parameters in the model can be determined using data from single-stage or multistage creep tests. The model can describe one-dimensional stress or strain responses under general conditions that include multistage loading with creep straining, continuous loading, and unloading or reloading. It also describes modelling for constant rate of straining tests, constant rate of stressing tests, and relaxation tests. Preconsolidation pressures are shown to depend on unloading–reloading, aging, and other loading processes. Key words : clay, compression, creep, equivalent time, elastic viscoplastic, preconsolidation pressure.


Sign in / Sign up

Export Citation Format

Share Document