scholarly journals Comparing strategies for selection of low-density SNPs for imputation-mediated genomic prediction in U. S. Holsteins

Genetica ◽  
2017 ◽  
Vol 146 (2) ◽  
pp. 137-149 ◽  
Author(s):  
Jun He ◽  
Jiaqi Xu ◽  
Xiao-Lin Wu ◽  
Stewart Bauck ◽  
Jungjae Lee ◽  
...  
Author(s):  
P.J. Killingworth ◽  
M. Warren

Ultimate resolution in the scanning electron microscope is determined not only by the diameter of the incident electron beam, but by interaction of that beam with the specimen material. Generally, while minimum beam diameter diminishes with increasing voltage, due to the reduced effect of aberration component and magnetic interference, the excited volume within the sample increases with electron energy. Thus, for any given material and imaging signal, there is an optimum volt age to achieve best resolution.In the case of organic materials, which are in general of low density and electric ally non-conducting; and may in addition be susceptible to radiation and heat damage, the selection of correct operating parameters is extremely critical and is achiev ed by interative adjustment.


2020 ◽  
Vol 26 (4) ◽  
pp. 185-189
Author(s):  
Tatiana Kojnoková ◽  
Lenka Markovičová ◽  
František Nový

AbstractThis work deals with the study of polymers, and, in particular, polyethylene; its production, types, properties, and usage. The experimental part evaluates the changes of properties of the polyethylene film to be reused under various exposure conditions and selection of the most suitable medium for its application. The film made of low-density polyethylene (LD-PE) was influenced by aggressive media with different pH, specifically Savo for the disinfection, Savo as a Saponate for dish washing and Coca-Cola. On LD-PE films the water absorption and melting temperature evaluation tests were performed. Carried out tests show that the most aggressive medium for LD-PE film from used media is Coca-Cola. The most effective application of LD-PE film like wrapping on container transported is the Savo used as a Saponate for dish washing.


Author(s):  
David R. Dalton

This undistinguished, productive, drought resistant, vigorous white grape, Airén, from the La Mancha region of Spain, was said to be the most widely planted grape in the world. In part the justification for this claim relies upon the observation that it is planted at a very low density! Except for its use in blending to make other wines “lighter,” it has not found wide accep¬tance. In part, it appears that its lack of popularity is the result of what is reported to be a mild, neutral flavor, and advertising has not pushed wines produced from it to the fore. Although it is now common to attempt to analyze the headspace (or ullage) in bottled wine (as well as the wine itself ) by chromatographic and mass spectrometric techniques it is less common to find that the grapes (skin, must, and seeds) are also subjected to such analysis. Nonetheless, the phenolic composition of V. vinifera var Airén was subjected to just such analysis during ripening from véraison to “technological” maturity (i.e., maturity which might actually be earlier than harvest, the latter being the decision of the viticulturist and vintner). The analysis of the ethyl ether extract of macerated skins, seeds, and accumulated solids (the pomace) was undertaken. Procyanidins and anthocyanins which would (the authors claim) interfere with subsequent analysis would not move into the ether phase. It was also found (using controls) that other highly polar materials (e.g., carboxylic acids) were only poorly extracted from the macerated skins and seeds. The isolated compounds and some information about their sources are provided in Figures 14.1 and 14.2. The analysis of the seeds, skin, and must did lead to the conclusion that “the maximum concentrations of benzoic and cinnamic acids and aldehydes and flavonol aglycones and glycosides at the end of the ripening period did not coincide with the minimum concentrations of the flavan-3-ols and hydroxycinnamic tartaric esters.” Depending upon what was sought, this information might thus affect decisions concerning the harvest date.


2019 ◽  
Vol 10 (2) ◽  
pp. 665-675
Author(s):  
Alencar Xavier ◽  
Katy M. Rainey

Soybean is a crop of major economic importance with low rates of genetic gains for grain yield compared to other field crops. A deeper understanding of the genetic architecture of yield components may enable better ways to tackle the breeding challenges. Key yield components include the total number of pods, nodes and the ratio pods per node. We evaluated the SoyNAM population, containing approximately 5600 lines from 40 biparental families that share a common parent, in 6 environments distributed across 3 years. The study indicates that the yield components under evaluation have low heritability, a reasonable amount of epistatic control, and partially oligogenic architecture: 18 quantitative trait loci were identified across the three yield components using multi-approach signal detection. Genetic correlation between yield and yield components was highly variable from family-to-family, ranging from -0.2 to 0.5. The genotype-by-environment correlation of yield components ranged from -0.1 to 0.4 within families. The number of pods can be utilized for indirect selection of yield. The selection of soybean for enhanced yield components can be successfully performed via genomic prediction, but the challenging data collections necessary to recalibrate models over time makes the introgression of QTL a potentially more feasible breeding strategy. The genomic prediction of yield components was relatively accurate across families, but less accurate predictions were obtained from within family predictions and predicting families not observed included in the calibration set.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 965 ◽  
Author(s):  
Shumin Zheng ◽  
Shaoqing Wang

The elastic properties of seventy different compositions were calculated to optimize the composition of a V–Mo–Nb–Ta–W system. A new model called maximum entropy approach (MaxEnt) was adopted. The influence of each element was discussed. Molybdenum (Mo) and tungsten (W) are key elements for the maintenance of elastic properties. The V–Mo–Nb–Ta–W system has relatively high values of C44, bulk modulus (B), shear modulus (G), and Young’s modulus (E), with high concentrations of Mo + W. Element W is brittle and has high density. Thus, low-density Mo can substitute part of W. Vanadium (V) has low density and plays an important role in decreasing the brittleness of the V–Mo–Nb–Ta–W system. Niobium (Nb) and tantalum (Ta) have relatively small influence on elastic properties. Furthermore, the calculated results can be used as a general guidance for the selection of a V–Mo–Nb–Ta–W system.


2019 ◽  
Vol 220 ◽  
pp. 173-179
Author(s):  
Valdecy Aparecida Rocha da Cruz ◽  
Luiz F. Brito ◽  
Flávio S. Schenkel ◽  
Hinayah Rojas de Oliveira ◽  
Mohsen Jafarikia ◽  
...  
Keyword(s):  

2012 ◽  
Vol 95 (9) ◽  
pp. 5403-5411 ◽  
Author(s):  
D. Segelke ◽  
J. Chen ◽  
Z. Liu ◽  
F. Reinhardt ◽  
G. Thaller ◽  
...  

2015 ◽  
Vol 43 (1) ◽  
pp. 31-39 ◽  
Author(s):  
A. Kargiotidou ◽  
E.K. Chatzivassiliou ◽  
C. Tzantarmas ◽  
I.S. Tokatlidis

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1520
Author(s):  
Salem Mohammed Aldosari ◽  
Sameer Rahatekar

Mesophase pitch-based carbon fibres have excellent resistance to plastic deformation (up to 840 GPa); however, they have very low strain to failure (0.3) and are considered brittle. Hence, the development of pitch fibre precursors able to be plastically deformed without fracture is important. We have previously, successfully developed pitch-based precursor fibres with high ductility (low brittleness) by blending pitch and linear low-density polyethylene. Here, we extend our research to study how the extrusion dwell time (0, 6, 8, and 10 min) affects the physical properties (microstructure) of blend fibres. Scanning electron microscopy of the microstructure showed that by increasing the extrusion dwell from 0 to 10 min the pitch and polyethylene components were more uniformly dispersed. The tensile strength, modulus of elasticity, and strain at failure for the extruded fibres for different dwell times were measured. Increased dwell time resulted in an increase in strain to failure but reduced the ultimate tensile strength. Thermogravimetric analysis was used to investigate if increased dwell time improved the thermal stability of the samples. This study presents a useful guide to help with the selection of mixes of linear low-density polyethylene/pitch blend, with an appropriate extrusion dwell time to help develop a new generation of potential precursors for pitch-based carbon fibres.


Sign in / Sign up

Export Citation Format

Share Document