Diagnostics of the Working Zone of Gradient Stability in a Magnetometer with Particle Susceptibility Control (For Magnetic Separation Problems)

Author(s):  
A. A. Sandulyak ◽  
M. N. Polismakova ◽  
D. A. Sandulyak ◽  
A. V. Sandulyak ◽  
V. A. Ershova
2010 ◽  
Vol 23 (2) ◽  
pp. 159-167
Author(s):  
Ilona Iatcheva ◽  
Rumena Stancheva ◽  
Georgi Kunov ◽  
Irish Jordanian

The present paper deals with a problem of shape identification in a magnetic separation system, used for separation of useful metal pieces from waste materials. The aim is to increase the productiveness of separation process. The effectiveness of the magnetic separator work is estimated on the basis of specific magnetic force, acting in the working zone of the device. This specific force depends on the magnetic field strength and its gradient. The forward problem of electromagnetic field determination has been solved using finite element method and Quickened 5.6 software package. The specific force determination and solution of the identification problem is realized in MATLOW.


Author(s):  
S. P. Eron’ko ◽  
M. Yu. Tkachev ◽  
E. V. Oshovskaya ◽  
B. I. Starodubtsev ◽  
S. V. Mechik

Effective application of slag-forming mixtures (SFM), being fed into continuous castingg machine (CCM) moulds, depends on their even distribution on the melt surface. Manual feeding of the SFM which is widely usedd does not provide this condition, resulting in the necessity to actualize the work to elaborate systems of SFM mechanized feedingg into moulds of various types CCM. A concept of the designing of a system of SFM feeding into CCM moulds presented with the ratte strictly correspondent to the casting speed and providing formation of an even layer of fine material of given thickness on the whoole surface of liquid steel. The proposed methods of designing of the SFM mechanized feeding systems based on three-dimensional computer simulation with the subsequent verification of the correctness of the adopted technical solutions on field samples. Informattion is presented on the design features of the adjusted facilities intended for continuous supply of finely granulated and powder mixtuures on metal mirror in moulds at the production of high-quality billets, blooms and slabs. Variants of mechanical and pneumo-mechaanical SFM supply elaborated. At the mechanical supply the fine material from the feeding hopper is moved at a adjusted distance bby a rigid horizontally located screw. At the pneumo-mechanical supply the metered doze of the granular mixture is delivered by a sshort vertical screw, the lower part of which is located in the mixing chamber attached from below to the hopper and equipped with ann ejector serving for pneumatic supply of the SFM in a stream of transporting gas. It was proposed to use flexible spiral screws in the ffuture facilities of mechanical SFM feeding. It will enable to eliminate the restrictions stipulated by the lack of free surface for locatiion of the facility in the working zone of the tundish, as well as to decrease significantly the mass of its movable part and to decreaase the necessary power of the carriage moving mechanism driver. The novelty of the proposed technical solutions is protected by thhree patents. The reduction of 10–15% in the consumption of slag-forming mixtures during the transition from manual to mechanizeed feeding confirmed. The resulting economic effect from the implementation of technical development enables to recoup the costs inncurred within 8–10 months.


1989 ◽  
Vol 29 (3) ◽  
pp. 150-155
Author(s):  
Takeshi OHARA
Keyword(s):  

Author(s):  
Meina FANG ◽  
Takaya TERADA ◽  
Fumihito MISHIMA ◽  
Yoko AKIYAMA ◽  
Yoshinobu IZUMI ◽  
...  

2017 ◽  
Vol 184 (8) ◽  
pp. 2505-2513 ◽  
Author(s):  
Xiaoting Ji ◽  
Haoyuan Lv ◽  
Minghui Ma ◽  
Binglin Lv ◽  
Caifeng Ding

2005 ◽  
Vol 293 (1) ◽  
pp. 106-110 ◽  
Author(s):  
Takuya Kinoshita ◽  
Satoshi Seino ◽  
Yoshiteru Mizukoshi ◽  
Yohei Otome ◽  
Takashi Nakagawa ◽  
...  

Author(s):  
Yasmin Kaveh-Baghbaderani ◽  
Raphaela Allgayer ◽  
Sebastian Patrick Schwaminger ◽  
Paula Fraga-García ◽  
Sonja Berensmeier

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 245
Author(s):  
Toyohisa Fujita ◽  
Taichi Aoki ◽  
Josiane Ponou ◽  
Gjergj Dodbiba ◽  
Chunlin He ◽  
...  

This study investigated the removal of sulfur and iron from shungite rocks through different methods after fine grinding: flotation, magnetic separation, microwave treatment, and chemical leaching. In this work, first, a mineralogical study of shungite was conducted. The carbon, silica, iron, and sulfur compositions in the as-received shungite were 45.4%, 38.3%, 4.6%, and 2.4%, respectively. In flotation, a sulfur grade of 1.4% was obtained. In the wet high-gradient magnetic separation at a magnetic flux density of 1 tesla, the iron and sulfur grades in the nonmagnetic fraction were 2.8% and 1.9%, respectively. Furthermore, the sulfur reduced to 0.2% by the 9 min microwave irradiation. In addition, chemical leaching using chelating reagents and inorganic acids was utilized to remove iron and sulfur. Nitrilotriacetic acid (NTA) could reduce the iron and sulfur grades to 2.0% and 0.9%, respectively. For leaching using reverse aqua regia, the iron and sulfur grades were reduced to 0.9% and 0.23%, respectively. For leaching using a 6N HCl with H2O2 aqueous solution, the iron and sulfur grades were reduced to 0.8% and 0.34%, respectively. Overall, chemical leaching using HCl with H2O2 was the most effective for iron and sulfur removal from shungite.


Sign in / Sign up

Export Citation Format

Share Document