scholarly journals Analysis and mapping quantitative trait loci for histidine content in barley (Hordeum vulgare L.) using microsatellite markers

Author(s):  
Lingfang Yan ◽  
Xiaomeng Yang ◽  
Zhenghai Sun ◽  
Juan Du ◽  
Xiaoying Pu ◽  
...  

AbstractMining the gene of histidine content in barley grain helps with the breeding of functional barley varieties. The study constructed a recombinant inbred lines (RILs) containing 193 families derived from the cross between Ziguangmangluoerling (ZGMLEL) (♀) and Schooner No.3 (♂). The histidine (HIS) content in the grain of the mapping population and its parents were determined by an automatic amino acid analyzer. The HIS content of ZGMLEL was 0.53 mg/g. The grain HIS content of Schooner No. 3 was 0.21 mg/g, and the grain HIS content of population ranged from 0.23 to 0.54. Genetic linkage maps, including those of seven chromosomes of barley, were constructed by using 180 pairs of simple sequence repeat (SSR) markers, with a total genetic distance of 2671.03 cM and average marker spacing of 14.84 cM. Quantitative trait locus (QTL) IciMappingV3.3 was used to analyze QTL of HIS content in barley grains, and three QTLs were detected. Mapping results showed that the three loci were located on chromosomes 2H, 4H, and 7H, respectively. The major QTL with a contribution rate of 10.11% was located on barley chromosome 4H (HVBAMMGB84-BMAG0808). The additive effect is positive (0.025). Thus, it comes from the high-value parent ZGMLEL. Another major QTL with a contribution rate of 13.75% was located on barley chromosome 7H (GBM1303-GMS056). The minor QTL with a contribution rate of 6.01% was located on chromosome 2H (Scssr03381-Scssr07759). The additive effects of 4H and 7H QTLs were negative (− 0.02 and − 0.033). So, they came from the male parent Schooner. The results provided a reference for further fine mapping, cloning, and transformation of HIS genes in barley grains.

Scientifica ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Luis T. Ortiz ◽  
Susana Velasco ◽  
Jesús Treviño ◽  
Beatriz Jiménez ◽  
Almudena Rebolé

The objectives of the current study were (1) to evaluate the effect of sprouting on protein, amino acids, fats, fatty acids, starch, total soluble carbohydrates, and ß-D-glucan content of barley grains and (2) to know the content of these nutrients in the morphological fractions of sprouts: green shoot, residual structure of sprouted grain (RSSG), residual structure of sprouted grain plus unsprouted grain (RSSG plus UG), and root fractions and to determine the proportion of each of these fractions (on fresh and dry basis) in the sprout biomass. Barley grain was sprouted in a commercial germination chamber for a period of 6 days. Raw grain was used as a control. Results showed that crude protein, ether extract, total soluble carbohydrates, and cellulose content increased, whereas starch and ß-D-glucan content decreased in sprouted when compared with the control grain. Amino acid and fatty acid profiles were also affected. Thus, aspartic acid, threonine, alanine, valine, isoleucine, lysine, and tryptophan content increased and only that of glutamic acid decreased after sprouting. Regarding fatty acids, an increase in the relative concentration of C18 : 0 and C18:3n-3 and a decrease in that of C18:1n-9 were detected. Partitioning of sprouted barley into three morphological component fractions showed that the residual structures of sprouted grains plus unsprouted grain fraction made up 82.9% and 93.6% of sprout biomass, on fresh and DM basis, respectively, and the remainder was provided by the root fraction, 10.3% and 3.2%, respectively, and by the green shoot fraction, 6.8% and 3.1%, respectively. The three morphological fractions differed in the content of the most analyzed nutrients.


Genome ◽  
2002 ◽  
Vol 45 (4) ◽  
pp. 719-727 ◽  
Author(s):  
Wenchun Zhou ◽  
Frederic L Kolb ◽  
Guihua Bai ◽  
Gregory Shaner ◽  
Leslie L Domier

Three chromosomal regions associated with scab resistance were detected in a common cultivar, Ning7840, by microsatellite and AFLP analysis. Six microsatellites on chromosome 3BS, Xgwm389, Xgwm533, Xbarc147, Xgwm493, Xbarc102, and Xbarc131, were integrated into an amplified fragment length polymorphism (AFLP) linkage group containing a major quantitative trait locus (QTL) for scab resistance in a mapping population of 133 recombinant inbred lines (RILs) derived from 'Ning7840' × 'Clark'. Based on single-factor analysis of variance of scab infection data from four experiments, Xgwm533 and Xbarc147 were the two microsatellite markers most tightly associated with the major scab resistance QTL. Interval analysis based on the integrated map of AFLP and microsatellite markers showed that the major QTL was located in a chromosome region about 8 cM in length around Xgwm533 and Xbarc147. Based on mapping of six microsatellite markers on eight 3BS deletion lines, the major QTL was located distal to breakage point 3BS-8. In total, 18 microsatellites were physically located on different subarm regions on 3BS. Two microsatellites, Xgwm120 and Xgwm614, were significantly associated with QTL for scab resistance on chromosome 2BL and 2AS, respectively. The resistance alleles on 3BS, 2BL, and 2AS were all derived from 'Ning7840'. Significant interaction between the major QTL on 3BS and the QTL on 2BL was detected based on microsatellite markers linked to them. Using these microsatellite markers would facilitate marker-assisted selection to improve scab resistance in wheat.Key words: Fusarium head blight, quantitative trait locus, physical mapping, Triticum aestivum L.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Sebastian Zahn ◽  
Thomas Schmutzer ◽  
Klaus Pillen ◽  
Andreas Maurer

Straw biomass and stability are crucial for stable yields. Moreover, straw harbors the potential to serve as a valuable raw material for bio-economic processes. The peduncle is the top part of the last shoot internode and carries the spike. This study investigates the genetic control of barley peduncle morphology. Therefore, 1411 BC1S3 lines of the nested association mapping (NAM) population “Halle Exotic Barley 25” (HEB-25), generated by crossing the spring barley elite cultivar Barke with an assortment of 25 exotic barley accessions, were used. Applying 50k Illumina Infinium iSelect SNP genotyping yielded new insights and a better understanding of the quantitative trait loci (QTL) involved in controlling the peduncle diameter traits, we found the total thickness of peduncle tissues and the area of the peduncle cross-section. We identified three major QTL regions on chromosomes 2H and 3H mainly impacting the traits. Remarkably, the exotic allele at the QTL on chromosome 3H improved all three traits investigated in this work. Introgressing this QTL in elite cultivars might facilitate to adjust peduncle morphology for improved plant stability or enlarged straw biomass production independent of flowering time and without detrimental effects on grain yield.


2017 ◽  
Vol 155 (8) ◽  
pp. 1263-1271 ◽  
Author(s):  
W. L. TENG ◽  
W. J. FENG ◽  
J. Y. ZHANG ◽  
N. XIA ◽  
J. GUO ◽  
...  

SUMMARYLutein benefits human health significantly, including that of the eyes, skin and heart. Therefore, increasing lutein content in soybean seeds is an important objective for breeding programmes. However, no information about soybean lutein-related quantitative trait loci (QTL) has been reported, as of 2016. The aim of the present study was to identify QTLs underlying the lutein content in soybean seeds. A population including 129 recombinant inbred lines was developed from the cross between ‘Dongnong46’ (lutein 13·10 µg/g) and ‘L-100’ (lutein 23·96 µg/g), which significantly differed in seed lutein contents. This population was grown in ten environments including Harbin in 2012, 2013, 2014 and 2015; Hulan in 2013, 2014 and 2015; and Acheng in 2013, 2014 and 2015. A total of 213 simple sequence repeat markers were used to construct the genetic linkage map, which covered approximately 3623·39 cM, with an average distance of 17·01 cM between markers. In the present study, eight QTLs associated with lutein content were found initially, which could explain 1·01–19·66% of the observed phenotypic variation in ten different tested environments. The phenotypic contribution of qLU-1 (located near BARC-Satt588 on chromosome 9 (Chr 9; linkage group (LG) K)) was >10% across seven tested environments, while qLU-2 (located near Satt192 of Chr 12 (LG H)) and qLU-3 (located near Satt353 of Chr12 (LGH)) could explain 5–10% of the observed phenotypic variation in more than seven environments, respectively. qLU-5, qLU-6, qLU-7 and qLU-8 could be detected in more than four environments. These eight QTLs were novel, and have considerable potential value for marker-assistant selection of higher lutein content in soybean lines.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 713
Author(s):  
Edward G. Barrett-Lennard ◽  
Rushna Munir ◽  
Dana Mulvany ◽  
Laine Williamson ◽  
Glen Riethmuller ◽  
...  

This paper focuses on the adverse effects of soil sodicity and alkalinity on the growth of barley (Hordeum vulgare L.) in a rainfed environment in south-western Australia. These conditions cause the accumulation of salt (called ‘transient salinity’) in the root zone, which decreases the solute potential of the soil solution, particularly at the end of the growing season as the soil dries. We hypothesized that two approaches could help overcome this stress: (a) improved micro-water harvesting at the soil surface, which would help maintain soil hydration, decreasing the salinity of the soil solution, and (b) soil amelioration using small amounts of gypsum, elemental sulfur or gypsum plus elemental sulfur, which would ensure greater salt leaching. In our experiments, improved micro-water harvesting was achieved using a tillage technique consisting of exaggerated mounds between furrows and the covering of these mounds with plastic sheeting. The combination of the mounds and the application of a low rate of gypsum in the furrow (50 kg ha−1) increased yields of barley grain by 70% in 2019 and by 57% in 2020, relative to a control treatment with conventional tillage, no plastic sheeting and no amendment. These increases in yield were related to changes in ion concentrations in the soil and to changes in apparent electrical conductivity measured with the EM38.


2013 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Sobrizal Sobrizal ◽  
Masdiar Bustamam ◽  
Carkum Carkum ◽  
Ahmad Warsun ◽  
Soeranto Human ◽  
...  

Blast disease caused by Pyricularia oryzae is one of the limiting factors for rice production world wide. The use of resistant varieties for managing blast disease is considered as the most eco-friendly approaches. However, their resistances may be broken down within a few years due to the appearance of new virulent blast races in the field. The objective of the present study was to identify the quantitative trait locus (QTL) conferring resistance to blast disease using 126 recombinant inbred (RI) lines originated from a crossing of a durably resistant upland rice genotype (Laka) and a highly susceptible rice accession cultivar (Kencana Bali). The RI population was developed through a single seed descent method from 1997 to 2004. Resistance of the RI lines was evaluated for blast in an endemic area of Sukabumi, West Java, in 2005. Disease intensity of the blast was examined following the standard evaluation system developed by the International Rice Research Institute (IRRI). At the same year the RI lines were analyzed with 134 DNA markers. Results of the study showed that one major QTL was found to be associated with blast resistance, and this QTL was located near RM2136 marker on the long arm of chromosome 11. This QTL explained 87% of the phenotypic variation with 37% additive effect. The map position of this QTL differed from that of a partial resistant gene, Pi34, identified previously on chromosome 11 in the Japanese durably resistant variety, Chubu 32. The QTL, however, was almost at the same position as that of the multiple allele-resistant gene, Pik. Therefore, an allelic test should be conducted to clarify the allelic relationship between QTL identified in this study and the Pik. The RI lines are the permanent segregating population that could be very useful for analysing phenotypic variations of important agronomic traits possibly owned by the RI lines. The major QTL identified in this study could be used as a genetic resource in improvement of rice varieties for blast resistance in Indonesia


BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jian Ma ◽  
Han Zhang ◽  
Shuiqin Li ◽  
Yaya Zou ◽  
Ting Li ◽  
...  

Abstract Background Kernel length (KL), kernel width (KW) and thousand-kernel weight (TKW) are key agronomic traits in wheat breeding. Chuannong16 (‘CN16’) is a commercial cultivar with significantly longer kernels than the line ‘20828’. To identify and characterize potential alleles from CN16 controlling KL, the previously developed recombinant inbred line (RIL) population derived from the cross ‘20828’ × ‘CN16’ and the genetic map constructed by the Wheat55K SNP array and SSR markers were used to perform quantitative trait locus/loci (QTL) analyses for kernel traits. Results A total of 11 putative QTL associated with kernel traits were identified and they were located on chromosomes 1A (2 QTL), 2B (2 QTL), 2D (3 QTL), 3D, 4A, 6A, and 7A, respectively. Among them, three major QTL, QKL.sicau-2D, QKW.sicau-2D and QTKW.sicau-2D, controlling KL, KW and TKW, respectively, were detected in three different environments. Respectively, they explained 10.88–18.85%, 17.21–21.49% and 10.01–23.20% of the phenotypic variance. Further, they were genetically mapped in the same interval on chromosome 2DS. A previously developed kompetitive allele-specific PCR (KASP) marker KASP-AX-94721936 was integrated in the genetic map and QTL re-mapping finally located the three major QTL in a 1- cM region flanked by AX-111096297 and KASP-AX-94721936. Another two co-located QTL intervals for KL and TKW were also identified. A few predicted genes involved in regulation of kernel growth and development were identified in the intervals of these identified QTL. Significant relationships between kernel traits and spikelet number per spike and anthesis date were detected and discussed. Conclusions Three major and stably expressed QTL associated with KL, KW, and TKW were identified. A KASP marker tightly linked to these three major QTL was integrated. These findings provide information for subsequent fine mapping and cloning the three co-localized major QTL for kernel traits.


Sign in / Sign up

Export Citation Format

Share Document