Greening Duplication-Based Dependent-Tasks Scheduling on Heterogeneous Large-Scale Computing Platforms

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tarek Hagras ◽  
Asmaa Atef ◽  
Yousef B. Mahdy
2021 ◽  
Vol 13 (2) ◽  
pp. 176
Author(s):  
Peng Zheng ◽  
Zebin Wu ◽  
Jin Sun ◽  
Yi Zhang ◽  
Yaoqin Zhu ◽  
...  

As the volume of remotely sensed data grows significantly, content-based image retrieval (CBIR) becomes increasingly important, especially for cloud computing platforms that facilitate processing and storing big data in a parallel and distributed way. This paper proposes a novel parallel CBIR system for hyperspectral image (HSI) repository on cloud computing platforms under the guide of unmixed spectral information, i.e., endmembers and their associated fractional abundances, to retrieve hyperspectral scenes. However, existing unmixing methods would suffer extremely high computational burden when extracting meta-data from large-scale HSI data. To address this limitation, we implement a distributed and parallel unmixing method that operates on cloud computing platforms in parallel for accelerating the unmixing processing flow. In addition, we implement a global standard distributed HSI repository equipped with a large spectral library in a software-as-a-service mode, providing users with HSI storage, management, and retrieval services through web interfaces. Furthermore, the parallel implementation of unmixing processing is incorporated into the CBIR system to establish the parallel unmixing-based content retrieval system. The performance of our proposed parallel CBIR system was verified in terms of both unmixing efficiency and accuracy.


IEEE Micro ◽  
2011 ◽  
Vol 31 (3) ◽  
pp. 60-71 ◽  
Author(s):  
Victor Jimenez ◽  
Francisco Cazorla ◽  
Roberto Gioiosa ◽  
Eren Kursun ◽  
Canturk Isci ◽  
...  

2018 ◽  
Vol 16 (06) ◽  
pp. 1850052
Author(s):  
Y. H. Lee ◽  
M. Khalil-Hani ◽  
M. N. Marsono

While physical realization of practical large-scale quantum computers is still ongoing, theoretical research of quantum computing applications is facilitated on classical computing platforms through simulation and emulation methods. Nevertheless, the exponential increase in resource requirement with the increase in the number of qubits is an inherent issue in classical modeling of quantum systems. In the effort to alleviate the critical scalability issue in existing FPGA emulation works, a novel FPGA-based quantum circuit emulation framework based on Heisenberg representation is proposed in this paper. Unlike previous works that are restricted to the emulations of quantum circuits of small qubit sizes, the proposed FPGA emulation framework can scale-up to 120-qubit on Altera Stratix IV FPGA for the stabilizer circuit case study while providing notable speed-up over the equivalent simulation model.


Sign in / Sign up

Export Citation Format

Share Document