Organization of Geotechnical Monitoring of the Foundation Structures of Wind Power Plants Using the Design and Construction of the Adygea Wind Farm as an Example

Author(s):  
R. M. Ikhsanov ◽  
I. A. Karaskov ◽  
N. V. Sermavbrin ◽  
R. G. Sergeev
Author(s):  
Hannes M. Hapke ◽  
Karl R. Haapala ◽  
Zhaohui Wu ◽  
Ted K. A. Brekken

Power generation for the existing electrical grid is largely based on the combustion of fossil fuels. Global concerns have been raised regarding the environmental sustainability of the system due to life cycle impacts, including land losses from fuel extraction and impacts of combustion emissions. An approach to reduce carbon emissions of fossil fuel-based energy employs the conversion of wind energy to electrical energy. The work presented describes modern wind power plants and provides an environmental assessment of a representative wind park from a life cycle perspective. The empirical analysis uses commercially available data, as well as information from an existing wind power plant. The life cycle assessment (LCA) study for a modern wind farm in the northwestern U.S. found that environmental benefits of avoiding typical electricity production greatly outweigh the impacts due to wind turbine construction and maintenance. Effects of component reliability, varying capacity factors, and energy portfolio are explored.


2020 ◽  
Author(s):  
Anubhav Jain ◽  
Jayachandra N. Sakamuri ◽  
Nicolaos A. Cutululis

Abstract. Large-scale integration of renewable energy sources with power-electronic converters is pushing the power system closer to its dynamic stability limit. This has increased the risk of wide-area blackouts. Thus, the changing generation profile in the power system necessitates the use of alternate sources of energy such as wind power plants, to provide blackstart services in the future. This however, requires grid-forming and not the traditionally prevalent grid-following wind turbines. In this paper, four different grid-forming control strategies have been implemented in an HVDC-connected wind farm. A simulation study has been carried out to test the different control schemes for the different stages of energization of onshore load by the wind farm. Their transient behaviour during transformer inrush, converter pre-charge and de-blocking, and onshore block-load pickup, has been compared to demonstrate the blackstart capabilities of grid-forming wind power plants for early participation in power system restoration.


Author(s):  
Alex Reis ◽  
Leandro Pains Moura ◽  
José Carlos de Oliveira

AbstractThe ever-growing demand for energy sources of low environmental impact has given a greater importance to wind farms in many countries. However, due to operational characteristics of these complexes, which are reflected into a variability of the energy produced and in the use of power electronic converters, the interaction between wind power plants and electrical networks shows itself to be an area of high investigative interest. In fact, among the various phenomena that exist, steady state voltage variations constitute a theme that is under the constant attention of electrical system operators. In this context, the present article is directed toward the analysis of a voltage regulation strategy aimed at wind power generation systems composed by synchronous machines and full converters. Once established the methodology that lead to an ancillary operation of the wind farm, the authors present results of computational simulations on ATP/EMTP platform that attest to the efficiency of the strategy.


Author(s):  
E. A. Bekirov ◽  
S. N. Voskresenskaya ◽  
V. V. Potenko

The article provides data on the generation and consumption of electricity by a wind farm. To maintain the operability of the wind farm, it is connected to the general grid of the power system, not only for the output of generated electricity, but also for the consumption of the necessary electricity to start the operation of wind turbines. Electricity generation, payback and net profit of a wind power plant of 12 wind turbines were estimated. Subject of study. Wind power plants and their efficiency. Materials and methods. The theoretical and methodological basis is the works of domestic and foreign scientists in the field of wind energy. In the work, analytical research methods were used, including predictive calculation of the annual energy production of wind turbines. Conclusions. The instability of electricity generation using renewable energy generating units is a serious problem that affects the cost of energy produced. According to the calculations, in 14 years, provided the electricity price is equal to 1.8 rubles, the power plant will recoup the investment and begin to generate net income. The correlation coefficient was determined, which was 0.94.


Author(s):  
A. Singh ◽  
F. Wolff ◽  
N. Chokani ◽  
R. S. Abhari

The increased penetration of wind-generated electricity exposes wind farm operators to market risks of a balanced supply in the transmission grid. In order to reduce the risks and to gain financial advantage for wind farm operators, the use of pumped hydro storage to adjust the delivery schedule of energy is proposed. An approach that systematically and rapidly addresses the economic, infrastructural, geographic and meteorological factors relevant to wind power plants and pumped hydro storage over large areas is required. An integrated Geographic Information System-based tool is developed to identify, on the scale of a country, wind power plants and pumped hydro storage facilities. Further, a decision algorithm that has inputs of the forecasted and actual wind energy productions, and the day-ahead and intraday electricity market prices is also developed to optimise the use of pumped hydro storage. This approach is demonstrated for Germany, with the target of increasing electricity production from renewable energy sources. A countrywide portfolio of wind power plants that meets the increased electricity production target, and existing and potential pumped hydro storage facilities are identified. By optimizing the use of pumped hydro storage, it is shown that wind farm operators can achieve a 2–4% gain on the Internal Rate of Return on investments. The improved financial performance with the use of pumped hydro storage increases the attractiveness for investments in the wind power sector and mitigates the adverse effects of the variability in the dispatch of wind-generated electricity.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1143 ◽  
Author(s):  
Ali Sahragard ◽  
Hamid Falaghi ◽  
Mahdi Farhadi ◽  
Amir Mosavi ◽  
Abouzar Estebsari

One of the essential aspects of power system planning is generation expansion planning (GEP). The purpose of GEP is to enhance construction planning and reduce the costs of installing different types of power plants. This paper proposes a method based on a genetic algorithm (GA) for GEP in the presence of wind power plants. Since it is desirable to integrate the maximum possible wind power production in GEP, the constraints for incorporating different levels of wind energy in power generation are investigated comprehensively. This will allow the maximum reasonable amount of wind penetration in the network to be obtained. Besides, due to the existence of different wind regimes, the penetration of strong and weak wind on GEP is assessed. The results show that the maximum utilization of wind power generation capacity could increase the exploitation of more robust wind regimes. Considering the growth of the wind farm industry and the cost reduction for building wind power plants, the sensitivity of GEP to the variations of this cost is investigated. The results further indicate that for a 10% reduction in the initial investment cost of wind power plants, the proposed model estimates that the overall cost will be minimized.


Author(s):  
Nazha Cherkaoui ◽  
Abdelaziz Belfqih ◽  
Faissal El Mariami ◽  
Jamal Boukherouaa ◽  
Abdelmajid Berdai

<p class="Default">Nowadays, the use of the wind energy has known an important increase because it is clean and cheap. However, many technical issues could occur due to the integration of wind power plants into power grids. As a result, many countries have published grid code requirements that new installed wind turbines have to satisfy in order to facilitate its intergration to electrical networks. Among those requirements, the wind farms must be able to participate to ancillary services for instance voltage regulation and reactive power control. Nevertheless, in case of small wind farms having not the necessary reactive power capability to contribute to reactive power support, Flexible AC Transmission Systems (FACTS) devices could also be used to participate to reactive power support. In this paper, an optimization method based on particle swarm optimization (PSO) technique is presented. This method allows getting the optimal location and reactive power injection of both wind power plants (WPP) and synchronous var compensators (SVC) with the objective to improve the voltage profile and to minimize the active power losses. The IEEE 14 bus system and a 20 MW wind farm based doubly fed induction generator (DFIG) are used to validate the proposed algorithm. The simulation results are analysed and compared.</p>


Author(s):  
Vаsіly Kоrdоnsky

There are many advantages of wind energy, including energy, environmental, economic. Relatively low investment in wind energy projects compared to traditional energy industries. The total kinetic energy of wind in the world can be estimated as 80 times higher than the total energy consumption by humans. And although only a certain fraction of this total can be used for energy needs, the future. The development of the technology itself has enormous potential. The article introduces and provides a brief analysis and historical background of existing designs of low-power wind power plants of the world's major manufacturers; the purpose of research on the proposed topic is indicated. Proposed and developed and described a promising scheme of a wind farm for the needs of small agricultural facilities, which makes it possible to receive electric current at low wind speeds in all natural and climatic zones of Ukraine. It has been established that low-power wind power plants are one of the promising areas for obtaining electrical energy and meeting the needs for small agricultural facilities. The proposed scheme for generating electrical energy. This design of a wind turbine can produce both DC and AC power for stand-alone or grid systems. The calculation of the wind turbine rotor diameter has been reduced. The advantages and disadvantages of wind energy in comparison with traditional energy industries are described. Brief conclusions are made on the proposed design of the wind farm, this will improve the environment, reducing the impact of anthropogenic factors on the environment and also, taking into account the constant increase in energy prices, save money, since such independent small wind farms allow small agricultural facilities to be provided with energy sources.


Sign in / Sign up

Export Citation Format

Share Document