Optimizing Synergy of Utility-Scale Wind and Pumped-Hydro Storage

Author(s):  
A. Singh ◽  
F. Wolff ◽  
N. Chokani ◽  
R. S. Abhari

The increased penetration of wind-generated electricity exposes wind farm operators to market risks of a balanced supply in the transmission grid. In order to reduce the risks and to gain financial advantage for wind farm operators, the use of pumped hydro storage to adjust the delivery schedule of energy is proposed. An approach that systematically and rapidly addresses the economic, infrastructural, geographic and meteorological factors relevant to wind power plants and pumped hydro storage over large areas is required. An integrated Geographic Information System-based tool is developed to identify, on the scale of a country, wind power plants and pumped hydro storage facilities. Further, a decision algorithm that has inputs of the forecasted and actual wind energy productions, and the day-ahead and intraday electricity market prices is also developed to optimise the use of pumped hydro storage. This approach is demonstrated for Germany, with the target of increasing electricity production from renewable energy sources. A countrywide portfolio of wind power plants that meets the increased electricity production target, and existing and potential pumped hydro storage facilities are identified. By optimizing the use of pumped hydro storage, it is shown that wind farm operators can achieve a 2–4% gain on the Internal Rate of Return on investments. The improved financial performance with the use of pumped hydro storage increases the attractiveness for investments in the wind power sector and mitigates the adverse effects of the variability in the dispatch of wind-generated electricity.

Author(s):  
Hannes M. Hapke ◽  
Karl R. Haapala ◽  
Zhaohui Wu ◽  
Ted K. A. Brekken

Power generation for the existing electrical grid is largely based on the combustion of fossil fuels. Global concerns have been raised regarding the environmental sustainability of the system due to life cycle impacts, including land losses from fuel extraction and impacts of combustion emissions. An approach to reduce carbon emissions of fossil fuel-based energy employs the conversion of wind energy to electrical energy. The work presented describes modern wind power plants and provides an environmental assessment of a representative wind park from a life cycle perspective. The empirical analysis uses commercially available data, as well as information from an existing wind power plant. The life cycle assessment (LCA) study for a modern wind farm in the northwestern U.S. found that environmental benefits of avoiding typical electricity production greatly outweigh the impacts due to wind turbine construction and maintenance. Effects of component reliability, varying capacity factors, and energy portfolio are explored.


2020 ◽  
Author(s):  
Anubhav Jain ◽  
Jayachandra N. Sakamuri ◽  
Nicolaos A. Cutululis

Abstract. Large-scale integration of renewable energy sources with power-electronic converters is pushing the power system closer to its dynamic stability limit. This has increased the risk of wide-area blackouts. Thus, the changing generation profile in the power system necessitates the use of alternate sources of energy such as wind power plants, to provide blackstart services in the future. This however, requires grid-forming and not the traditionally prevalent grid-following wind turbines. In this paper, four different grid-forming control strategies have been implemented in an HVDC-connected wind farm. A simulation study has been carried out to test the different control schemes for the different stages of energization of onshore load by the wind farm. Their transient behaviour during transformer inrush, converter pre-charge and de-blocking, and onshore block-load pickup, has been compared to demonstrate the blackstart capabilities of grid-forming wind power plants for early participation in power system restoration.


2021 ◽  
Vol 274 ◽  
pp. 01009
Author(s):  
Larisa Filimonova ◽  
Elena Matys ◽  
Aleksandr Sbitnev ◽  
Elena Juze ◽  
Anastasia Bokova

In modern conditions of falling business activity of enterprises and falling incomes of the population, the growing trend of electricity shortages persists. This need may be aggravated by the high level of deterioration of equipment at Russian thermal power plants. All world practice shifts the guidelines for expanding electricity production towards the creation of a market for pre-fabricated renewable energy sources. In the article, the authors focused on justifying the need for the massive construction of wind power plants as an alternative source of energy. Today, «traditional» energy sources cannot meet the growing demand in remote areas of the Tyumen region with districts in the context of the spread of modern information technologies and the process of digitalization of public services. The current situation also imposes significant restrictions on the intensity of the development of the process of educational technologies in remote settlements. In this connection, the authors of the article decided to conduct an analytical study to substantiate the ways of territorial development through the launch of projects for the construction of compact wind power plants as an alternative source of energy in providing resources to remote settlements.


2018 ◽  
Vol 7 (3.5) ◽  
pp. 4
Author(s):  
Valeri Telegin ◽  
Nikolai Titov ◽  
Anatoli Stepanov

Power supply systems for small businesses based on renewable energy sources are most often based on converting wind energy, solar energy and water energy. Calculating its effectiveness is a time-consuming task, requiring the processing of a large amount of data specific for the geographical location of power generating units. In the article the technique of computer modeling of work of a park of wind power plants (WPP) with the purpose of definition of an optimum parity of their parameters is considered.   


2021 ◽  
Vol 288 ◽  
pp. 01003
Author(s):  
Saken Koyshybaevich Sheryazov ◽  
Sultanbek Sansyzbaevich Issenov ◽  
Ruslan Maratbekovich Iskakov ◽  
Argyn Bauyrzhanuly Kaidar

The paper describes special aspects of using the wind power plants (wind turbines) in the power grid. The paper provides the classification and schematic presentation of AC wind turbines, analyzes the role, place and performance of wind power plants in Smart Grid systems with a large share of renewable energy sources. The authors also reviews a detailed analysis of existing AC wind turbines in this paper. Recommendations are given for how to enhance the wind power plants in smart grids in terms of reliability, and introduce the hardware used in the generation, conversion and interface systems into the existing power grid. After the wind power plants had been put online, the relevance of the Smart Grid concept for existing power grids was obvious. The execution of such projects is assumed to be financially costly, requires careful study, and development of flexible algorithms, but in some cases this may be the only approach. The analysis of using wind turbines shows that the structural configuration of wind power plants can be based on the principles known in the power engineering. The approaches may differ, not fundamentally, but in engineering considerations. it is necessary to point out that the method of controlling dual-power machines is quite comprehensive so that their wide use will face operational problems caused by the lack of highly professional specialists in electric drives. Therefore, it seems advisable to use square-cage asynchronous generators in wide applications. The paper shows that as the renewable energy sources are largely used in power grids, there is an issue of maintaining the power generation at a required level considering the variability of incoming wind energy. This results in the malfunctions in the operation of relay protection devices and emergency control automatics (RP and ECA), and the complicated control. Also, the standards of the CIS countries and regulatory documents miss the requirements for the wind turbine protections, taking into account their specialty causing the inefficient standard protective logic, which does not work correctly in a number of abnormal and emergency operating modes, and especially Smart Grid in power grids.


Author(s):  
Linda Ponta ◽  
Luca Oneto ◽  
Davide Anguita ◽  
Silvano Cincotti

The paper deals with the problem of choosing the best O&M strategy for wind power plants. Current maintenance theory considers just production opportunities and minimizes the maintenance costs, but with the liberalization of the electricity market also the electricity price has become an important variable to take into account in the O&M scheduling. Another important variables that is often neglected by the existing maintenance theory is the weather condition. This paper proposes a new strategy that takes into account the electricity price and weather conditions, improves the expected profit of the systems, and reduce the overall maintenance and logistic costs. The maintenance schedule is formalized as an optimization problem where the discounted cumulative profit of a wind generation portfolio in a fixed-time horizon (e.g. two years ahead), subject to the technologically-derived maintenance time constraints is optimized. Both the theoretical and computational aspects of the proposed O&M strategy are discussed. Results show that taking into account market and weather opportunities in the design of the maintenance strategy, it is possible to achieve a more complete scheduling for a given set of wind power plants.


Wind ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 77-89
Author(s):  
David Hennecke ◽  
Carsten Croonenbroeck

Before a new wind farm can be built, politics and regional planning must approve of the respective area as a suitable site. For this purpose, large-scale potential computations were carried out to identify suitable areas. The calculation of wind power plant potential usually focuses on capturing the highest energy potential. In Germany, due to an energy production reimbursement factor defined in the Renewable Energy Sources Act (“Erneuerbare-Energien-Gesetz”, EEG) in 2017, the influence of energy quantities on the power plant potential varies, economically and spatially. Therefore, in addition to the calculation of energy potentials, it was also necessary to perform a potential analysis in terms of economic efficiency. This allows, on the one hand, an economic review of the areas tendered by the regional planning and, on the other hand, a spatial-economic analysis that expands the parameters in the search for new areas. In this work, (a) potentials with regard to the levelized cost of electricity (LCOE) were calculated by the example of the electricity market in Germany, which were then (b) spatially and statistically processed on the level of the federal states.


2021 ◽  
Vol 265 ◽  
pp. 04011
Author(s):  
Liudmila Nefedova ◽  
Kirill Degtyarev ◽  
Sophia Kiseleva ◽  
Mikhail Berezkin

The article discusses the possibilities of hydrogen production using renewable energy sources in Russia for energy storage and for export. The global trends in the development of green hydrogen energy reducing the CO2 emission are highlighted. The analysis of the potential for hydrogen production in regions of Russia using electricity from operating wind power plants (WPPs), as well as wind power projects planned for construction until 2024 has been carried out.


2019 ◽  
Vol 11 (5) ◽  
pp. 1266 ◽  
Author(s):  
Adriana Florescu ◽  
Sorin Barabas ◽  
Tiberiu Dobrescu

A topical issue globally is the development and implementation of renewable energy sources for sustainable development. To meet current requirements, the research in this paper is directed towards finding solutions to increase the performance and efficiency of wind power plants by implementing innovative solutions for hollow roller bearings developed through the use of sustainable growth programs in the field of green energy. Another solution that has the effect of increasing wind power performance consists of the implementation of a new large-size lubrication system for large-size bearings in wind energy units, which will increase their durability by developing maintenance capabilities. In this research, we will explore the possibility of introducing an innovative automated lubrication system in hollow roller bearings. The main results of the research, the innovative constructive solutions, will lead to important savings by lowering wind farm maintenance costs, increasing the durability of large bearings, and increasing the energy efficiency and yield of the whole system. The expected impact of implementing the solutions found will mainly be in the field of sustainable growth and environmental development.


Sign in / Sign up

Export Citation Format

Share Document