Water-Level Fluctuations in Mediterranean Reservoirs: Setting a Dewatering Threshold as a Management Tool to Improve Water Quality

Hydrobiologia ◽  
2005 ◽  
Vol 548 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Luigi Naselli-Flores ◽  
Rossella Barone
Author(s):  
Jacques Walumona ◽  
Boaz Arara ◽  
Cyprian Ogombe ◽  
James Murakaru ◽  
Phillip Raburu ◽  
...  

The study was conducted in Lake Baringo and determined quantitative relationships between water level changes, water quality, and fishery production for informed lake basin management. Long-term (2008 to 2020) data on water level, water quality, and fisheries yields from Lake Baringo were analyzed using a combination of statistical methods. Linear and waveform regression analyses described patterns of lake level fluctuations over time while, Pearson’s correlation determined the concordance of lake level changes with water quality parameters, landings, and condition of fish species. PCA results grouped the study period into different years based on annual water quality variable levels. LOWESS analysis showed the decline of annual lake level amplitude over time with peak values in 1964 (8.6 m) and 2008 (9.4 m). The waveform regression significantly modeled lake level fluctuations as indexed by annual deviations from the long-term average (DLTM) and showed a 20-year oscillation between peak water levels in the lake. There were significant positive correlations of Water Level Fluctuations (WLFs) with water quality variables and water quality index (WQI) in Lake Baringo. Linear regression analyses showed a significant concordance (p < 0.05) between the annual fishery yield and the rising WLFs (r = 0.66). Overall, the results demonstrate that WLFs of Lake Baringo are a driver of fish species biomass and physico-chemical properties of the lake. We recommend the integration of fisheries yields, water quality assessment, and WLFs modeling at different temporal scales in the management of Afrotropical lake ecosystems


2021 ◽  
Author(s):  
◽  
Cheng Shi

<p>Wetlands are areas where lands transition to water bodies. Because of this special geomorphological setting, wetlands play important roles in flood control, nutrient retention, and water storage. In New Zealand, less than ten percent of the original wetlands have survived since human settlement. Many of the remaining wetlands are still under threat from water quality degradation, invasive species, and changes in hydrological regime. Wetland restoration is the process of bringing the structure and function of a wetland back to its original state. Although specific objectives may vary between different projects, three major objectives of wetland restoration are restoration of wetland function, restoration of wetland structure, and restoration of traditional landscape and land-use practices. In order to ensure the success of a wetland restoration project, a good understanding of the hydrological process in the wetland is the first step. Boggy Pond and Matthews Lagoon are located at the eastern edge of Lake Wairarapa in the Wellington Region. They formed as a result of the deposition of sanddunes on the eastern shore and changes in river courses between floods. They were modified by a series of engineering works under the lower Wairarapa valley development scheme in the 1980s. As a result, Matthews Lagoon now receives agricultural outputs from surrounding farms; it is affected by water pollution and invasive plant species. Boggy Pond is cut off from Lake Wairarapa and surrounding wetlands by a road and stopbank, leaving a more stable water level compared to its original state. To analyse the water and nutrient balance in these two wetlands, factors such as surface flows, surface water levels, groundwater levels, rainfall, climate data, and water quality were assessed at various monitoring stations in this study. It is believed that Matthews Lagoon and Boggy Pond have completely different water regimes. Matthews Lagoon receives surface inflow from the Te Hopai drainage scheme and discharges to Oporua floodway, but Boggy Pond only has rainfall as the water input. The results from the water balance analysis seem to support this assumption. An unexpected finding in Matthews Lagoon suggests that water might bypass the main wetland, creating a shortcut between the inlet and outlet. As a result, the nutrient removal ability was considerably weakened by this bypass because of the short water retention time. In Boggy Pond, there may be an unknown water input which could adversely affect the water quality and natural water regime. Boggy Pond is expected to have better water quality than Matthews Lagoon as the latter receives agricultural drainage from surrounding farms. The results from water quality monitoring also support this hypothesis. The nutrient balance in Matthews Lagoon showed very limited removal ability for phosphate but much higher removal rate for nitrate. The removal rate in summer for phosphate was less than 5% while in winter more phosphate was discharged from Matthews Lagoon than it received from Te Hopai drainage scheme. For nitrate pollutants, the removal rate was as high as 17% even in winter. Some recommendations are given on the restoration of these two wetlands. First, set proper objectives according to their different functions. Second, enhance the nutrient removal ability of Matthews Lagoon by harvesting plants, removing old sediments, and creating a more evenly distributed flow across the wetland throughout the year. Third, restore the natural water level fluctuations and improve water quality in Boggy Pond by identifying any unknown water inputs first.</p>


2010 ◽  
Vol 10 (1) ◽  
pp. 29-36
Author(s):  
Agnieszka Ławniczak ◽  
Janina Zbierska ◽  
Sylwia Machula ◽  
Adam Choiński

Fluvial lakes affect on phosphorus and potassium concentrations in the Samica Stęszewska River The aim of the study was to evaluate the effect of shallow lakes on reactive, total phosphorus and potassium concentrations in the river water and analyse the effect of changes in water retention in lake on nutrient concentrations in river waters. The study was carried out in the Samica Steszewska River. This is lowland river, which flows through two polymictic lakes. The study site is located in the Wielkopolska Lowland, Central-west Poland. Water samples were collected at depths of 0.5 m below the water surface. Reactive, total phosphorus and potassium were analysed monthly by standard methods. The study was carried out from January to December 1999-2002 (period with high water retention), 2005-2008 (period with low water retention), at four control points. Sites were located at the inflow and outflow of the Samica Stęszewska River into and out of Niepruszewskie and Tomickie Lakes. From 1974 to 2002, Lake Niepruszewskie was regulated at its outlet by a weir. In 2002, the water level was reduced. Changes of water retention in Niepruszewskie Lake influenced water discharge of the Samica Stęszewska River. The results indicate that changes in water retention have significantly influenced water quality in the river, particularly total and reactive phosphorus concentrations; however, this influence was not observed in respect to potassium concentrations. Nutrient concentrations in river strongly depend on water quality of the lake ecosystem and their buffering capacity. Additionally, by improving water quality, increased oxygen concentrations, and decreasing dissolved nutrient concentrations, as well as increased amplitude of water level fluctuations in lakes may increase P-fixation rates in outlet streams.


2021 ◽  
Author(s):  
◽  
Cheng Shi

<p>Wetlands are areas where lands transition to water bodies. Because of this special geomorphological setting, wetlands play important roles in flood control, nutrient retention, and water storage. In New Zealand, less than ten percent of the original wetlands have survived since human settlement. Many of the remaining wetlands are still under threat from water quality degradation, invasive species, and changes in hydrological regime. Wetland restoration is the process of bringing the structure and function of a wetland back to its original state. Although specific objectives may vary between different projects, three major objectives of wetland restoration are restoration of wetland function, restoration of wetland structure, and restoration of traditional landscape and land-use practices. In order to ensure the success of a wetland restoration project, a good understanding of the hydrological process in the wetland is the first step. Boggy Pond and Matthews Lagoon are located at the eastern edge of Lake Wairarapa in the Wellington Region. They formed as a result of the deposition of sanddunes on the eastern shore and changes in river courses between floods. They were modified by a series of engineering works under the lower Wairarapa valley development scheme in the 1980s. As a result, Matthews Lagoon now receives agricultural outputs from surrounding farms; it is affected by water pollution and invasive plant species. Boggy Pond is cut off from Lake Wairarapa and surrounding wetlands by a road and stopbank, leaving a more stable water level compared to its original state. To analyse the water and nutrient balance in these two wetlands, factors such as surface flows, surface water levels, groundwater levels, rainfall, climate data, and water quality were assessed at various monitoring stations in this study. It is believed that Matthews Lagoon and Boggy Pond have completely different water regimes. Matthews Lagoon receives surface inflow from the Te Hopai drainage scheme and discharges to Oporua floodway, but Boggy Pond only has rainfall as the water input. The results from the water balance analysis seem to support this assumption. An unexpected finding in Matthews Lagoon suggests that water might bypass the main wetland, creating a shortcut between the inlet and outlet. As a result, the nutrient removal ability was considerably weakened by this bypass because of the short water retention time. In Boggy Pond, there may be an unknown water input which could adversely affect the water quality and natural water regime. Boggy Pond is expected to have better water quality than Matthews Lagoon as the latter receives agricultural drainage from surrounding farms. The results from water quality monitoring also support this hypothesis. The nutrient balance in Matthews Lagoon showed very limited removal ability for phosphate but much higher removal rate for nitrate. The removal rate in summer for phosphate was less than 5% while in winter more phosphate was discharged from Matthews Lagoon than it received from Te Hopai drainage scheme. For nitrate pollutants, the removal rate was as high as 17% even in winter. Some recommendations are given on the restoration of these two wetlands. First, set proper objectives according to their different functions. Second, enhance the nutrient removal ability of Matthews Lagoon by harvesting plants, removing old sediments, and creating a more evenly distributed flow across the wetland throughout the year. Third, restore the natural water level fluctuations and improve water quality in Boggy Pond by identifying any unknown water inputs first.</p>


2017 ◽  
Vol 90 (2) ◽  
pp. 53-65 ◽  
Author(s):  
OYAGI Hideo ◽  
ENDOH Shuichi ◽  
ISHIKAWA Toshiyuki ◽  
OKUMURA Yasuaki ◽  
TSUKAWAKI Shinji

Sign in / Sign up

Export Citation Format

Share Document