Complex hydromorphology of meanders can support benthic invertebrate diversity in rivers

Hydrobiologia ◽  
2011 ◽  
Vol 685 (1) ◽  
pp. 49-68 ◽  
Author(s):  
X.-F. Garcia ◽  
I. Schnauder ◽  
M. T. Pusch
PLoS Biology ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. e3001145
Author(s):  
Allan Raffard ◽  
Julien Cucherousset ◽  
José M. Montoya ◽  
Murielle Richard ◽  
Samson Acoca-Pidolle ◽  
...  

Loss in intraspecific diversity can alter ecosystem functions, but the underlying mechanisms are still elusive, and intraspecific biodiversity–ecosystem function (iBEF) relationships have been restrained to primary producers. Here, we manipulated genetic and functional richness of a fish consumer (Phoxinus phoxinus) to test whether iBEF relationships exist in consumer species and whether they are more likely sustained by genetic or functional richness. We found that both genotypic and functional richness affected ecosystem functioning, either independently or interactively. Loss in genotypic richness reduced benthic invertebrate diversity consistently across functional richness treatments, whereas it reduced zooplankton diversity only when functional richness was high. Finally, losses in genotypic and functional richness altered functions (decomposition) through trophic cascades. We concluded that iBEF relationships lead to substantial top-down effects on entire food chains. The loss of genotypic richness impacted ecological properties as much as the loss of functional richness, probably because it sustains “cryptic” functional diversity.


2004 ◽  
Vol 61 (10) ◽  
pp. 1817-1831 ◽  
Author(s):  
Florian Mermillod-Blondin ◽  
Magali Gérino ◽  
Sabine Sauvage ◽  
Michel Creuzé des Châtelliers

The main objective of this study was to measure the impact of benthic invertebrate diversity on river sediment processes. We quantified the effects of interactions between three taxa (asellids, chironomid larvae, and tubificid worms). The impacts of different taxa richness treatments were measured on sediment reworking, O2 concentrations, bacterial abundances, and numbers of active bacteria in slow filtration sand–gravel columns. The coefficients of sediment reworking measured in multitaxa treatments were lower than those predicted from one-taxon treatments. The interactions among invertebrates also significantly reduced O2 concentrations in sediments. These results were probably due to interactions between the different sediment structures produced by each taxon (tubes, macropores, and fecal pellets) that modified water flow and associated microbial activities in the interstitial habitat. The stimulation of aerobic microbial processes with two- and three-taxa treatments, whereas one-taxon treatments could increase or decrease O2 consumption in columns, indicates that interactions among invertebrates limited the variability of the system functioning. We suggest that, beyond a small number of detritivorous taxa, a threshold effect on bioturbation process and microbial activities was produced by animals in the experimental system. Finally, the interactions between taxa played a significant role in microbial processes in the system studied.


2009 ◽  
Vol 382 ◽  
pp. 239-252 ◽  
Author(s):  
PE Renaud ◽  
TJ Webb ◽  
A Bjørgesæter ◽  
I Karakassis ◽  
M Kedra ◽  
...  

Author(s):  
Allan Raffard ◽  
Julien Cucherousset ◽  
José M. Montoya ◽  
Murielle Richard ◽  
Samson Acoca-Pidolle ◽  
...  

AbstractLoss in intraspecific diversity can alter ecosystem functions, but the underlying mechanisms are still elusive, and intraspecific biodiversity-ecosystem function relationships (iBEF) have been restrained to primary producers. Here, we manipulated genetic and functional richness of a fish consumer (Phoxinus phoxinus), to test whether iBEF relationships exist in consumer species, and whether they are more likely sustained by genetic or functional richness. We found that both genotypic and functional richness affected ecosystem functioning, either independently or in interaction. Loss in genotypic richness reduced benthic invertebrate diversity consistently across functional richness treatments, whereas it reduced zooplankton diversity only when functional richness was high. Finally, both losses in genotypic and functional richness altered essential functions (e.g. decomposition) through trophic cascades. We concluded that iBEF relationships lead to substantial top-down effects on entire food chains. The loss of genotypic richness impacted ecological properties as much as the loss of functional richness, probably because it sustains “cryptic” functional diversity.


2021 ◽  
Vol 80 (2) ◽  
Author(s):  
Georg Niedrist ◽  
Birgit Lösch ◽  
Magdalena Nagler ◽  
Hannes Rauch ◽  
Samuel Vorhauser ◽  
...  

High biodiversity is a prerequisite for the integrity, stability, and functioning of global aquatic ecosystems, but it is currently subject to anthropogenic threats. Small freshwater bodies with high habitat diversity are essential to sustain regional biodiversity, but species inventory and biodiversity are largely overlooked, especially in mountainous regions. In the Italian Alps, obligate assessments of freshwater biota (e.g., for the European water framework directive, WFD) are usually done in larger rivers or lakes only, which is why many taxa from small freshwater habitats might have been overlooked so far. Here we summarize and discuss the efforts to record aquatic invertebrates within the framework of so-called "Biodiversity Days", organized since 2001 at 13 different sites located across the North Italian province of South Tyrol. These events with voluntary participation of scientists and naturalists from universities and environmental agencies led to the detection of 334 benthic invertebrate taxa in streams and lakes (mostly species or genus level), whereby higher taxa richness was found in streams. The overall hierarchy of species numbers within invertebrate orders or families corresponded to that of other Alpine regions (groups richest in taxa were Chironomidae and Trichoptera) and these Biodiversity Days contributed to biodiversity research of that region in detecting 167 additional taxa. Besides analyzing yearly gains in the regional taxa inventory, we predict that future surveys will lead to new discoveries of aquatic taxa for that province (i.e., current modeling estimates a regional inventory of more than 600 taxa). However, specific surveys in hitherto unconsidered habitats, such as morphologically modified or urban waters, might reveal even more taxa than currently estimated. Besides characterizing the invertebrate fauna of this region and providing a first reference list for future monitoring projects in the same region, this work demonstrates that such Biodiversity Days can contribute to biodiversity research.


2002 ◽  
Vol 38 (3) ◽  
pp. 8
Author(s):  
V. V. Murina ◽  
Ye. V. Lisitskaya ◽  
V. K. Shalyapin

Sign in / Sign up

Export Citation Format

Share Document