Phytoplankton community response to hydrological variations in oxbow lakes with different levels of connection to a tropical river

Hydrobiologia ◽  
2013 ◽  
Vol 721 (1) ◽  
pp. 223-238 ◽  
Author(s):  
D. C. Granado ◽  
R. Henry
2021 ◽  
Vol 193 (11) ◽  
Author(s):  
Md. Ayenuddin Haque ◽  
Md. Abu Sayed Jewel ◽  
Most. Mahmuda Akhi ◽  
Usman Atique ◽  
Alok Kumar Paul ◽  
...  

Limnologica ◽  
2019 ◽  
Vol 76 ◽  
pp. 82-93 ◽  
Author(s):  
Thi Thuy Duong ◽  
Thi Thu Hang Hoang ◽  
Trung Kien Nguyen ◽  
Thi Phuong Quynh Le ◽  
Nhu Da Le ◽  
...  

2013 ◽  
Vol 27 (4) ◽  
pp. 1274-1290 ◽  
Author(s):  
Irina Marinov ◽  
Scott C. Doney ◽  
Ivan D. Lima ◽  
K. Lindsay ◽  
J. K. Moore ◽  
...  

2012 ◽  
Vol 9 (12) ◽  
pp. 19199-19243 ◽  
Author(s):  
V. Giovagnetti ◽  
C. Brunet ◽  
F. Conversano ◽  
F. Tramontano ◽  
I. Obernosterer ◽  
...  

Abstract. In this study, we investigate the phytoplankton community response, with emphasis on ecophysiology and succession, after two experimental additions of Saharan dust in the surface layer of a low-nutrient low-chlorophyll ecosystem in the Mediterranean Sea. Three mesocosms were amended with evapocondensed dust to simulate realistic Saharan dust events while three additional mesocosms were kept unamended and served as controls. Experiments consisted in two consecutive dust additions and samples were daily collected at different depths (−0.1, −5 and −10 m) during one week, starting before each addition occurred. Data concerning HPLC pigment analysis on two size classes (< 3 and > 3 µm), electron transport rate (ETR) versus irradiance curves, non-photochemical fluorescence quenching (NPQ) and phytoplankton cell abundance (measured by flow cytometry), are presented and discussed in this paper. Results show that picophytoplankton mainly respond to the first dust addition, while the second addition leads to an increase of both pico- and nano-/microphytoplankton. Ecophysiological changes in the phytoplankton community are revealed, and an increase in NPQ development, as well as in pigment concentration per cell, follows the dust additions. ETR does not show large variations between dust-amended and control conditions, while biomass increases in response to the dust additions. Furthermore, the biomass increase observed during this mesocosm experiment allows us to attempt a quantitative assessment and parameterization of the onset of a phytoplankton bloom in a nutrient-limited ecosystem. These results are discussed focusing on the adaptation of picophytoplankton to such a nutrient-limited mixed layer system, as well as on size-dependent competition ability in phytoplankton.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3120
Author(s):  
Greta Minelgaite ◽  
Diana A. Stephansen ◽  
Márta Simon ◽  
Morten L. Fejerskov ◽  
Jes Vollertsen

This study investigated the responses of natural phytoplankton communities of an urban stormwater pond to biocide contamination. The biocides carbendazim, terbutryn, diuron, and irgarol 1051, and their mixture, were used in two laboratory microcosm and one outdoor mesocosm studies at concentrations of 10, 100, and 1000 ng L−1. The water samples were collected in a pond receiving significant biocide contamination. The mesocosm study was carried out in the same pond. The phytoplankton community response was evaluated after 10–15 days of exposure, with respect to its taxonomic composition, abundance and biovolume. No significant changes were observed in any of the experiments. Only at the highest applied terbutryn concentration were lower numbers of taxa identified in both microcosm and mesocosm experiments. Additionally, increases in Chlorophyta abundance and biovolume, along with an increase in irgarol concentration, were observed throughout the three experiments. Nevertheless, the statistical analysis did not confirm any significant differences among the biocide treatments. These results suggest that the biocide concentrations probably were below the harmful or toxic threshold to the stormwater pond phytoplankton. On the other hand, as the investigated pond phytoplankton taxa face biocide inputs throughout the year, they could have already adapted to the tested biocide contamination.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3394 ◽  
Author(s):  
Nur Filiz ◽  
Uğur Işkın ◽  
Meryem Beklioğlu ◽  
Burak Öğlü ◽  
Yu Cao ◽  
...  

Phytoplankton usually responds directly and fast to environmental fluctuations, making them useful indicators of lake ecosystem changes caused by various stressors. Here, we examined the phytoplankton community composition before, during, and after a simulated 1-month heat wave in a mesocosm facility in Silkeborg, Denmark. The experiment was conducted over three contrasting temperature scenarios (ambient (A0), Intergovernmental Panel on Climate Change A2 scenario (circa +3 °C, A2) and A2+ %50 (circa +4.5 °C, A2+)) crossed with two nutrient levels (low (LN) and high (HN)) with four replicates. The facility includes 24 mesocosms mimicking shallow lakes, which at the time of our experiment had run without interruption for 11 years. The 1-month heat wave effect was simulated by increasing the temperature by 5 °C (1 July to 1 August) in A2 and A2+, while A0 was not additionally heated. Throughout the study, HN treatments were mostly dominated by Cyanobacteria, whereas LN treatments were richer in genera and mostly dominated by Chlorophyta. Linear mixed model analyses revealed that high nutrient conditions were the most important structuring factor, which, regardless of temperature treatments and heat waves, increased total phytoplankton, Chlorophyta, Bacillariophyta, and Cyanobacteria biomasses and decreased genus richness and the grazing pressure of zooplankton. The effect of temperature was, however, modest. The effect of warming on the phytoplankton community was not significant before the heat wave, yet during the heat wave it became significant, especially in LN-A2+, and negative interaction effects between nutrient and A2+ warming were recorded. These warming effects continued after the heat wave, as also evidenced by Co-inertia analyses. In contrast to the prevailing theory stating that more diverse ecosystems would be more stable, HN were less affected by the heat wave disturbance, most likely because the dominant phytoplankton group cyanobacteria is adapted to high nutrient conditions and also benefits from increased temperature. We did not find any significant change in phytoplankton size diversity, but size evenness decreased in HN as a result of an increase in the smallest and largest size classes simultaneously. We conclude that the phytoplankton community was most strongly affected by the nutrient level, but less sensitive to changes in both temperature treatments and the heat wave simulation in these systems, which have been adapted for a long time to different temperatures. Moreover, the temperature and heat wave effects were observed mostly in LN systems, indicating that the sensitivity of phytoplankton community structure to high temperatures is dependent on nutrient availability.


Sign in / Sign up

Export Citation Format

Share Document