scholarly journals No Clear Response in the Stormwater Phytoplankton Community to Biocide Contamination

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3120
Author(s):  
Greta Minelgaite ◽  
Diana A. Stephansen ◽  
Márta Simon ◽  
Morten L. Fejerskov ◽  
Jes Vollertsen

This study investigated the responses of natural phytoplankton communities of an urban stormwater pond to biocide contamination. The biocides carbendazim, terbutryn, diuron, and irgarol 1051, and their mixture, were used in two laboratory microcosm and one outdoor mesocosm studies at concentrations of 10, 100, and 1000 ng L−1. The water samples were collected in a pond receiving significant biocide contamination. The mesocosm study was carried out in the same pond. The phytoplankton community response was evaluated after 10–15 days of exposure, with respect to its taxonomic composition, abundance and biovolume. No significant changes were observed in any of the experiments. Only at the highest applied terbutryn concentration were lower numbers of taxa identified in both microcosm and mesocosm experiments. Additionally, increases in Chlorophyta abundance and biovolume, along with an increase in irgarol concentration, were observed throughout the three experiments. Nevertheless, the statistical analysis did not confirm any significant differences among the biocide treatments. These results suggest that the biocide concentrations probably were below the harmful or toxic threshold to the stormwater pond phytoplankton. On the other hand, as the investigated pond phytoplankton taxa face biocide inputs throughout the year, they could have already adapted to the tested biocide contamination.

2000 ◽  
Vol 57 (3) ◽  
pp. 538-547 ◽  
Author(s):  
Jennifer L Klug ◽  
Janet M Fischer

Acidification causes profound changes in species composition in aquatic systems. We conducted mesocosm experiments in three northern Wisconsin lakes (Trout Lake, Little Rock - Reference, Little Rock - Treatment) to test how different phytoplankton communities respond to acidification. Major differences exist among these lakes in water chemistry and phytoplankton community composition. In each lake, three pH treatments (control, press (sustained pH 4.7), and pulse (alternating pH 4.7 and ambient pH)) were maintained for 6 weeks. We observed a striking increase in species in the genus Mougeotia in all systems. Mougeotia is a filamentous green alga often found in acidified lakes. The magnitude of the Mougeotia increase differed among lakes and treatments, and we used an autoregressive model to identify potential factors responsible for these differences. Our results suggest that biotic factors such as competition with other algae played a relatively minor role in regulating Mougeotia dynamics. Instead, pH and abiotic factors associated with changes in pH (e.g., dissolved inorganic carbon) were important predictors of Mougeotia dynamics.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2650
Author(s):  
Kiyoko Yokota ◽  
Marissa Mehlrose

Microplastics are an emerging environmental pollutant, whose global ubiquity is becoming increasingly evident. Conventional wastewater treatment does not completely remove them, and there are growing concerns about microplastics in source water and post-treatment drinking water. Microplastics have been reported to alter the development, physiology, and behavior of various aquatic organisms; however, limited knowledge exists on their effect on natural phytoplankton communities. Many studies also use uniformly spherical plastic beads, while most scrub particles in consumer products and secondary microplastics in the environment have various shapes and sizes. We tested the effects of two types of microplastics, 50 µm polystyrene (PS) calibration beads and polylactic acid (PLA) plastic body wash scrub particles, and one type of plant-derived body wash scrub particle on a natural phytoplankton assemblage through a 7-day incubation experiment in a temperate, mesotrophic lake. The calibration beads and the plant-derived particles generally did not alter the taxonomic composition of the phytoplankton in the mesocosms, while the PLA body wash microplastics eliminated cryptophytes (p < 0.001) and increased chrysophytes (p = 0.041). Our findings demonstrate differential effects of irregularly shaped PLA body wash microplastics vs. PS calibration beads on lake phytoplankters and empirically support potential bottom-up alteration of the aquatic food web by secondary microplastics.


2019 ◽  
Author(s):  
Bruce L. Greaves ◽  
Andrew T. Davidson ◽  
Alexander D. Fraser ◽  
John P. McKinlay ◽  
Andrew Martin ◽  
...  

Abstract. Ozone depletion and climate change are causing the Southern Annular Mode (SAM) to become increasingly positive, driving stronger winds southward in the Southern Ocean (SO), with likely effects on phytoplankton habitat due to changes in ocean mixing, nutrient upwelling, and sea ice. This study examined the effect of the SAM and other environmental variables on the abundance of siliceous and calcareous phytoplankton in the seasonal ice zone (SIZ) of the SO. Samples were collected during repeat transects between Hobart, Australia, and Dumont d'Urville, Antarctica, centred around longitude 142° E, over 11 consecutive austral spring-summers (2002–2012). Twenty-two taxa, comprised of species, genera or higher taxonomic groups, were analysed using CAP analysis, cluster analysis and correlation. The SAM significantly affected phytoplankton community composition, with the greatest influence exerted by a SAM index averaged across 57 days centred on 11th March in the preceding autumn, explaining 13.3 % of the variance of taxa composition during the following spring–summer, and showing correlation with the relative abundance of 12 of the 22 taxa resolved. The day through the spring-summer that a sample was collected exerted the greatest influence on phytoplankton community structure (15.4 % of variance explained), reflecting the extreme seasonal variation in the physical environment in the SIZ that drives phytoplankton community succession. The response of different species of Fragilariopsis spp. and Chaetoceros spp. differed over the spring–summer and with the SAM, indicating the importance of species-level observation in detecting subtle changes in pelagic ecosystems. This study indicated that higher SAM favoured increases in the relative-abundance of large Chaetoceros spp. that predominated later in the spring–summer and reductions in small diatom taxa and siliceous and calcareous flagellates that predominated earlier in the spring–summer. Such changes in the taxonomic composition of phytoplankton, the pasture of the SO and principal energy source for Antarctic life, may alter both carbon sequestration and composition of higher tropic levels of the SIZ region of the SO.


2016 ◽  
Vol 542 ◽  
pp. 51-62 ◽  
Author(s):  
JR Graff ◽  
TK Westberry ◽  
AJ Milligan ◽  
MB Brown ◽  
G Dall’Olmo ◽  
...  

1987 ◽  
Vol 44 (12) ◽  
pp. 2155-2163 ◽  
Author(s):  
I. M. Gray

Differences between nearshore and offshore phytoplankton biomass and composition were evident in Lake Ontario in 1982. Phytoplankton biomass was characterized by multiple peaks which ranged over three orders of magnitude. Perhaps as a consequence of the three times higher current velocities at the northshore station, phytoplankton biomass ranged from 0.09 to 9.00 g∙m−3 compared with 0.10 to 2.40 g∙m−3 for the midlake station. Bacillariophyceae was the dominant group at the northshore station until September when Cyanophyta contributed most to the biomass (83%). Although Bacillariophyceae was the principal component of the spring phytoplankton community at the midlake station, phytoflagellates (49%) and Chlorophyceae (25%) were responsible for summer biomass, with the Chlorophyceae expanding to 80% in the fall. The seasonal pattern of epilimnetic chlorophyll a correlated with temperature. While chlorophyll a concentrations were similar to values from 1970 and 1972, algal biomass had declined and a number of eutrophic species (Melosira binderana, Stephanodiscus tenuis, S. hantzschii var. pusilla, and S. alpinus) previously found were absent in 1982.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 181
Author(s):  
Alexia D. Saint-Macary ◽  
Neill Barr ◽  
Evelyn Armstrong ◽  
Karl Safi ◽  
Andrew Marriner ◽  
...  

The cycling of the trace gas dimethyl sulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) may be affected by future ocean acidification and warming. DMSP and DMS concentrations were monitored over 20-days in four mesocosm experiments in which the temperature and pH of coastal water were manipulated to projected values for the year 2100 and 2150. This had no effect on DMSP in the two-initial nutrient-depleted experiments; however, in the two nutrient-amended experiments, warmer temperature combined with lower pH had a more significant effect on DMSP & DMS concentrations than lower pH alone. Overall, this indicates that future warming may have greater influence on DMS production than ocean acidification. The observed reduction in DMSP at warmer temperatures was associated with changes in phytoplankton community and in particular with small flagellate biomass. A small decrease in DMS concentration was measured in the treatments relative to other studies, from −2% in the nutrient-amended low pH treatment to −16% in the year 2150 pH and temperature conditions. Temporal variation was also observed with DMS concentration increasing earlier in the higher temperature treatment. Nutrient availability and community composition should be considered in models of future DMS.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Helbert Eduardo Espitia ◽  
Iván Machón-González ◽  
Hilario López-García ◽  
Guzmán Díaz

Systems of distributed generation have shown to be a remarkable alternative to a rational use of energy. Nevertheless, the proper functioning of them still manifests a range of challenges, including both the adequate energy dispatch depending on the variability of consumption and the interaction between generators. This paper describes the implementation of an adaptive neurofuzzy system for voltage control, regarding the changes observed in the consumption within the distribution system. The proposed design employs two neurofuzzy systems, one for the plant dynamics identification and the other for control purposes. This focus optimizes the controller using the model achieved through the identification of the plant, whose changes are produced by charge variation; consequently, this process is adaptively performed. The results show the performance of the adaptive neurofuzzy system via statistical analysis.


1989 ◽  
Vol 25 (1) ◽  
pp. 11-25
Author(s):  
D. J. Finney

SUMMARYObservations that are frequencies rather than measurements often call for special types of statistical analysis. This paper comments on circumstances in which methods for one type of data can sensibly be used for the other. A section on two-way contingency tables emphasizes the proper role of χ2 a test statistic but not a measure of association; it mentions the distinction between one-tail and two-tail significance tests and reminds the reader of dangers. Multiway tables bring new complications, and the problems of interactions when additional classificatory factors are explicit or hidden are discussed at some length. A brief outline attempts to show how probit, logit, and similar techniques are related to the analysis of contingency tables. Finally, three unusual examples are described as illustrations of the care that is needed to avoid jumping to conclusions on how frequency data should be analysed.


Sign in / Sign up

Export Citation Format

Share Document