scholarly journals Effects of an experimental increase in flow intermittency on an alpine stream

Hydrobiologia ◽  
2020 ◽  
Vol 847 (16) ◽  
pp. 3453-3470
Author(s):  
Andre R. Siebers ◽  
Amael Paillex ◽  
Benjamin Misteli ◽  
Christopher T. Robinson
Ecography ◽  
2019 ◽  
Vol 42 (9) ◽  
pp. 1523-1535 ◽  
Author(s):  
Andre R. Siebers ◽  
Amael Paillex ◽  
Christopher T. Robinson

2018 ◽  
Vol 15 (21) ◽  
pp. 6637-6648 ◽  
Author(s):  
Yinghui Wang ◽  
Robert G. M. Spencer ◽  
David C. Podgorski ◽  
Anne M. Kellerman ◽  
Harunur Rashid ◽  
...  

Abstract. The Qinghai–Tibet Plateau (QTP) accounts for approximately 70 % of global alpine permafrost and is an area sensitive to climate change. The thawing and mobilization of ice-rich and organic-carbon-rich permafrost impact hydrologic conditions and biogeochemical processes on the QTP. Despite numerous studies of Arctic permafrost, there are no reports to date for the molecular-level in-stream processing of permafrost-derived dissolved organic matter (DOM) on the QTP. In this study, we examine temporal and spatial changes of DOM along an alpine stream (3850–3207 m above sea level) by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), accelerator mass spectrometry (AMS) and UV–visible spectroscopy. Compared to downstream sites, dissolved organic matter (DOM) at the headstream site exhibited older radiocarbon age, higher mean molecular weight, higher aromaticity and fewer highly unsaturated compounds. At the molecular level, 6409 and 1345 formulas were identified as unique to the active layer (AL) leachate and permafrost layer (PL) leachate, respectively. Comparing permafrost leachates to the downstream site, 59 % of AL-specific formulas and 90 % of PL-specific formulas were degraded, likely a result of rapid in-stream degradation of permafrost-derived DOM. From peak discharge in the summer to low flow in late autumn, the DOC concentration at the headstream site decreased from 13.9 to 10.2 mg L−1, while the 14C age increased from 745 to 1560 years before present (BP), reflecting an increase in the relative contribution of deep permafrost carbon due to the effect of changing hydrological conditions over the course of the summer on the DOM source (AL vs. PL). Our study thus demonstrates that hydrological conditions impact the mobilization of permafrost carbon in an alpine fluvial network, the signature of which is quickly lost through in-stream mineralization and transformation.


2020 ◽  
pp. 1653-1658
Author(s):  
L. Picco ◽  
R. Rainato ◽  
G. Pellegrini ◽  
L. Martini ◽  
M.A. Lenzi ◽  
...  

2004 ◽  
Vol 1 (1) ◽  
pp. 497-531 ◽  
Author(s):  
T. J. Battin ◽  
A. Wille ◽  
R. Psenner ◽  
A. Richter

Abstract. Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater hydrogeochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal), groundwater-fed (krenal) and snow-fed (rhithral) streams – all of them representative for alpine stream networks – and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment) of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportional high microbial growth. Krenal and rhithral streams with more constant and favorable environments serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g. snowmelt) of elevated hydrologic linkage among streams. Ice and snow dynamics have a crucial impact on microbial biofilms, and we thus need better understanding of the microbial ecology and enhanced consideration of critical hydrological episodes in future models predicting alpine stream communities.


2018 ◽  
Vol 40 ◽  
pp. 02027
Author(s):  
Riccardo Rainato ◽  
Lorenzo Picco ◽  
Daniele Oss Cazzador ◽  
Luca Mao

The bedload transport is challenging to analyze in field, consequently, several assumptions about it were made basing on laboratory researches or on short-term field studies. During the last decades several monitoring methods were developed to assess the bedload transport in the fluvial systems. The aim of this work is to investigate the transport of the coarse sediment material in a steep alpine stream, using the bedload tracking. The Rio Cordon is a typical alpine channel, located in the northeast of Italy. It is characterized by a rough streambed with a prevalent boulder-cascade and step pool morphology. Since 2011, 250 clasts equipped with Passive Integrated Transponders (PIT) were installed in the main channel, to analyze their mobility along a reach 320 m long. From November 2012 to August 2015, the transport induced by a range of hydraulic forcing between 0.44 m3 s-1 and 2.10 m3 s-1 was assessed by 10 PIT-surveys. First, the mobility expressed by the tracers was analyzed, observing marked differences in terms of travel distance. Then, the average recovery rate achieved during the tracer inventories (Rr > 70%) permitted to define the threshold discharge for each grain size class analyzed and, then, to assess the virtual velocity experienced by the tracers.


Sign in / Sign up

Export Citation Format

Share Document