Propofol Attenuates Airway Inflammation in a Mast Cell-Dependent Mouse Model of Allergic Asthma by Inhibiting the Toll-like Receptor 4/Reactive Oxygen Species/Nuclear Factor κB Signaling Pathway

Inflammation ◽  
2018 ◽  
Vol 41 (3) ◽  
pp. 914-923 ◽  
Author(s):  
Hong-Yi Li ◽  
Jing-Xia Meng ◽  
Zhen Liu ◽  
Xiao-Wen Liu ◽  
Yu-Guang Huang ◽  
...  
2021 ◽  
Vol 37 (9) ◽  
pp. 564-572
Author(s):  
Lingxiu Zhang ◽  
Huilan Yi ◽  
Nan Sang

Sulfur dioxide (SO2) is a common air pollutant that can exacerbate asthmatic airway inflammation. The mechanisms underlying these effects are not yet fully understood. In this study, we investigated the effects of SO2 exposure (10 mg/m3) on asthmatic airway inflammation in ovalbumin-induced asthmatic mice. Our results showed that SO2 exposure alone induced slight airway injury, decreased superoxide dismutase activity, and increased nuclear factor-κB (NF-κB) expression in the lungs of mice. Moreover, SO2 exposure in asthmatic mice induced marked pathological damage, significantly increased the counts of inflammatory cells (e.g., macrophages, lymphocytes, and eosinophils) in bronchoalveolar lavage fluid, and significantly enhanced malondialdehyde and glutathione levels in the lungs. Moreover, the expression of toll-like receptor 4 (TLR4), NF-κB, pro-inflammatory cytokines (e.g., tumor necrosis factor α and interleukin-6), and type II T-helper cell (Th2) cytokines was found to be elevated in the mice exposed to SO2 and ovalbumin compared to those exposed to ovalbumin alone. These results suggest that SO2 amplifies Th2-mediated inflammatory responses, which involve reactive oxygen species and TLR4/NF-κB pathway activation; these can further enhance Th2 cytokine expression and eosinophilic inflammation. Thus, our findings provide important evidence to understand a potential mechanism through which SO2 may exacerbate airway asthmatic inflammation.


2020 ◽  
Vol 48 (12) ◽  
pp. 030006052098094
Author(s):  
Shuang Qin ◽  
Li Li ◽  
Jia Liu ◽  
Jinrui Zhang ◽  
Qing Xiao ◽  
...  

Objective The present study aimed to evaluate the effects of cluster of differentiation (CD)4+CD25+ forkhead box p3 (Foxp3)+ regulatory T cells (Tregs) on unexplained recurrent spontaneous abortion (URSA) and the associated mechanisms. Methods The proportion of CD4+CD25+Foxp3+ Tregs and inflammatory cytokine concentrations in the peripheral blood of women with URSA were measured by flow cytometry and enzyme-linked immunosorbent assay, respectively. CBA/JxDBA/2J mating was used to establish an abortion-prone mouse model and the model mice were treated with the Toll-like receptor 4 (TLR4) antagonist E5564 and the TLR4 agonist lipopolysaccharide. Results The proportion of CD4+CD25+Foxp3+ Tregs was decreased and the inflammatory response was increased in women with URSA. In the abortion-prone mouse model, E5564 significantly increased the proportion of CD4+CD25+Foxp3+ Tregs, decreased the inflammatory response, and increased Foxp3 mRNA and protein expression. Lipopolysaccharide had adverse effects on the abortion-prone model. Conclusions These data suggest that CD4+CD25+Foxp3+ Tregs regulate immune homeostasis in URSA via the TLR4/nuclear factor-κB pathway, and that the TLR4 antagonist E5564 may be a novel and potential drug for treating URSA.


2013 ◽  
Vol 116 (2) ◽  
pp. 327-335 ◽  
Author(s):  
In Sun Chung ◽  
Jie Ae Kim ◽  
Ju A. Kim ◽  
Hyun Sung Choi ◽  
Jeong Jin Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document