scholarly journals Deciding Where to Sleep: Spatial Levels of Nesting Selection in Chimpanzees (Pan troglodytes) Living in Savanna at Issa, Tanzania

2020 ◽  
Vol 41 (6) ◽  
pp. 870-900 ◽  
Author(s):  
R. Adriana Hernandez-Aguilar ◽  
Trond Reitan

AbstractTo understand how animals select resources we need to analyze selection at different spatial levels or scales in the habitat. We investigated which physical characteristics of trees (dimensions and structure, e.g., height, trunk diameter, number of branches) determined nesting selection by chimpanzees (Pan troglodytes) on two different spatial scales: individual nesting trees and nesting sites. We also examined whether individual tree selection explained the landscape pattern of nesting site selection. We compared the physical characteristics of actual (N = 132) and potential (N = 242) nesting trees in nesting sites (in 15 plots of 25 m × 25 m) and of all trees in actual and potential nesting sites (N = 763 in 30 plots of 25 m × 25 m). We collected data in May and June 2003 in Issa, a dry and open savanna habitat in Tanzania. Chimpanzees selected both the site they used for nesting in the landscape and the trees they used to build nests within a nesting site, demonstrating two levels of spatial selection in nesting. Site selection was stronger than individual tree selection. Tree height was the most important variable for both nesting site and tree selection in our study, suggesting that chimpanzees selected both safe sites and secure trees for sleeping.

2009 ◽  
Vol 25 (2) ◽  
pp. 107-121 ◽  
Author(s):  
Jan H. D. Wolf ◽  
S. Robbert Gradstein ◽  
Nalini M. Nadkarni

Abstract:The sampling of epiphytes is fraught with methodological difficulties. We present a protocol to sample and analyse vascular epiphyte richness and abundance in forests of different structure (SVERA). Epiphyte abundance is estimated as biomass by recording the number of plant components in a range of size cohorts. Epiphyte species biomass is estimated on 35 sample-trees, evenly distributed over six trunk diameter-size cohorts (10 trees with dbh > 30 cm). Tree height, dbh and number of forks (diameter > 5 cm) yield a dimensionless estimate of the size of the tree. Epiphyte dry weight and species richness between forests is compared with ANCOVA that controls for tree size. SChao1 is used as an estimate of the total number of species at the sites. The relative dependence of the distribution of the epiphyte communities on environmental and spatial variables may be assessed using multivariate analysis and Mantel test. In a case study, we compared epiphyte vegetation of six Mexican oak forests and one Colombian oak forest at similar elevation. We found a strongly significant positive correlation between tree size and epiphyte richness or biomass at all sites. In forests with a higher diversity of host trees, more trees must be sampled. Epiphyte biomass at the Colombian site was lower than in any of the Mexican sites; without correction for tree size no significant differences in terms of epiphyte biomass could be detected. The occurrence of spatial dependence, at both the landscape level and at the tree level, shows that the inclusion of spatial descriptors in SVERA is justified.


2021 ◽  
Vol 13 (1) ◽  
pp. 131
Author(s):  
Franziska Taubert ◽  
Rico Fischer ◽  
Nikolai Knapp ◽  
Andreas Huth

Remote sensing is an important tool to monitor forests to rapidly detect changes due to global change and other threats. Here, we present a novel methodology to infer the tree size distribution from light detection and ranging (lidar) measurements. Our approach is based on a theoretical leaf–tree matrix derived from allometric relations of trees. Using the leaf–tree matrix, we compute the tree size distribution that fit to the observed leaf area density profile via lidar. To validate our approach, we analyzed the stem diameter distribution of a tropical forest in Panama and compared lidar-derived data with data from forest inventories at different spatial scales (0.04 ha to 50 ha). Our estimates had a high accuracy at scales above 1 ha (1 ha: root mean square error (RMSE) 67.6 trees ha−1/normalized RMSE 18.8%/R² 0.76; 50 ha: 22.8 trees ha−1/6.2%/0.89). Estimates for smaller scales (1-ha to 0.04-ha) were reliably for forests with low height, dense canopy or low tree height heterogeneity. Estimates for the basal area were accurate at the 1-ha scale (RMSE 4.7 tree ha−1, bias 0.8 m² ha−1) but less accurate at smaller scales. Our methodology, further tested at additional sites, provides a useful approach to determine the tree size distribution of forests by integrating information on tree allometries.


2020 ◽  
Vol 13 (1) ◽  
pp. 77
Author(s):  
Tianyu Hu ◽  
Xiliang Sun ◽  
Yanjun Su ◽  
Hongcan Guan ◽  
Qianhui Sun ◽  
...  

Accurate and repeated forest inventory data are critical to understand forest ecosystem processes and manage forest resources. In recent years, unmanned aerial vehicle (UAV)-borne light detection and ranging (lidar) systems have demonstrated effectiveness at deriving forest inventory attributes. However, their high cost has largely prevented them from being used in large-scale forest applications. Here, we developed a very low-cost UAV lidar system that integrates a recently emerged DJI Livox MID40 laser scanner (~$600 USD) and evaluated its capability in estimating both individual tree-level (i.e., tree height) and plot-level forest inventory attributes (i.e., canopy cover, gap fraction, and leaf area index (LAI)). Moreover, a comprehensive comparison was conducted between the developed DJI Livox system and four other UAV lidar systems equipped with high-end laser scanners (i.e., RIEGL VUX-1 UAV, RIEGL miniVUX-1 UAV, HESAI Pandar40, and Velodyne Puck LITE). Using these instruments, we surveyed a coniferous forest site and a broadleaved forest site, with tree densities ranging from 500 trees/ha to 3000 trees/ha, with 52 UAV flights at different flying height and speed combinations. The developed DJI Livox MID40 system effectively captured the upper canopy structure and terrain surface information at both forest sites. The estimated individual tree height was highly correlated with field measurements (coniferous site: R2 = 0.96, root mean squared error/RMSE = 0.59 m; broadleaved site: R2 = 0.70, RMSE = 1.63 m). The plot-level estimates of canopy cover, gap fraction, and LAI corresponded well with those derived from the high-end RIEGL VUX-1 UAV system but tended to have systematic biases in areas with medium to high canopy densities. Overall, the DJI Livox MID40 system performed comparably to the RIEGL miniVUX-1 UAV, HESAI Pandar40, and Velodyne Puck LITE systems in the coniferous site and to the Velodyne Puck LITE system in the broadleaved forest. Despite its apparent weaknesses of limited sensitivity to low-intensity returns and narrow field of view, we believe that the very low-cost system developed by this study can largely broaden the potential use of UAV lidar in forest inventory applications. This study also provides guidance for the selection of the appropriate UAV lidar system and flight specifications for forest research and management.


2021 ◽  
Vol 13 (12) ◽  
pp. 2297
Author(s):  
Jonathon J. Donager ◽  
Andrew J. Sánchez Meador ◽  
Ryan C. Blackburn

Applications of lidar in ecosystem conservation and management continue to expand as technology has rapidly evolved. An accounting of relative accuracy and errors among lidar platforms within a range of forest types and structural configurations was needed. Within a ponderosa pine forest in northern Arizona, we compare vegetation attributes at the tree-, plot-, and stand-scales derived from three lidar platforms: fixed-wing airborne (ALS), fixed-location terrestrial (TLS), and hand-held mobile laser scanning (MLS). We present a methodology to segment individual trees from TLS and MLS datasets, incorporating eigen-value and density metrics to locate trees, then assigning point returns to trees using a graph-theory shortest-path approach. Overall, we found MLS consistently provided more accurate structural metrics at the tree- (e.g., mean absolute error for DBH in cm was 4.8, 5.0, and 9.1 for MLS, TLS and ALS, respectively) and plot-scale (e.g., R2 for field observed and lidar-derived basal area, m2 ha−1, was 0.986, 0.974, and 0.851 for MLS, TLS, and ALS, respectively) as compared to ALS and TLS. While TLS data produced estimates similar to MLS, attributes derived from TLS often underpredicted structural values due to occlusion. Additionally, ALS data provided accurate estimates of tree height for larger trees, yet consistently missed and underpredicted small trees (≤35 cm). MLS produced accurate estimates of canopy cover and landscape metrics up to 50 m from plot center. TLS tended to underpredict both canopy cover and patch metrics with constant bias due to occlusion. Taking full advantage of minimal occlusion effects, MLS data consistently provided the best individual tree and plot-based metrics, with ALS providing the best estimates for volume, biomass, and canopy cover. Overall, we found MLS data logistically simple, quickly acquirable, and accurate for small area inventories, assessments, and monitoring activities. We suggest further work exploring the active use of MLS for forest monitoring and inventory.


The Auk ◽  
2001 ◽  
Vol 118 (3) ◽  
pp. 727-735 ◽  
Author(s):  
Jason Jones ◽  
Raleigh J. Robertson

Abstract We examined habitat selection by breeding Cerulean Warblers (Dendroica cerulea) at three spatial scales in eastern Ontario over three years (1997–1999). Territories were characterized by well-spaced large trees, with high canopies and dense foliage cover at heights between 12–18 m. Nesting habitat additionally was characterized by dense foliage cover above 18 m. The results of our nest-patch (0.04 ha circle around nest) and nest-site (0.01 ha circle) analyses indicate that male Cerulean Warblers may take active roles in nest-site selection when selecting territories. We conclude from our nest-patch and nest-site selection analyses that territories likely contain multiple nest patches and sites and that male Cerulean Warblers may defend areas with multiple nest patches or sites, which may attract females to settle with them. Whether or not Cerulean Warbler females use nest-site availability as a mate- or territory-choice cue remains unknown. We also tested the validity of a commonly made assumption that a random sampling of habitat by researchers is representative of the habitat actually available to birds and found that, in our study area, the assumption was invalid. Taken together, our results point toward the need to maintain sizeable stands of mature, deciduous forest to ensure the persistence of Cerulean Warblers in eastern Ontario. Population characteristics such as lower minimum area requirements and a resilience to habitat disturbance may make that an easier job in eastern Ontario than elsewhere in this species' breeding range.


1978 ◽  
Vol 110 (3) ◽  
pp. 301-318 ◽  
Author(s):  
K. W. Richards

AbstractThe niche breadth and overlap in nesting preferences of 15 species of bumble bees were investigated in Alberta. Some of the factors that influence the distribution of nesting sites and abundance of species and permit the species to coexist in sympatry are discussed. Artificial domiciles were used as potential nesting sites. Some species were specialists in terms of nest site selection while others were generalists. The few natural nests found, the long periods spent by queens searching for nests, the high frequency of usurpation or direct interference and death of intruders, and the frequency of high niche overlap values between species are evidence that nesting sites are limited and are incompletely partitioned among the coexisting species. Usurpation also demonstrates the competition among individuals and species. Phenological differences in nest establishment influence the competition among the species. Camouflaging of tunnels presumably reduces the intensity of usurpation and protects queens and the brood from inclement weather and from social parasites (e.g., Psithyrus) and predators.


2018 ◽  
Vol 10 (12) ◽  
pp. 1972 ◽  
Author(s):  
Katarzyna Zielewska-Büttner ◽  
Marco Heurich ◽  
Jörg Müller ◽  
Veronika Braunisch

Forest biodiversity conservation requires precise, area-wide information on the abundance and distribution of key habitat structures at multiple spatial scales. We combined airborne laser scanning (ALS) data with color-infrared (CIR) aerial imagery for identifying individual tree characteristics and quantifying multi-scale habitat requirements using the example of the three-toed woodpecker (Picoides tridactylus) (TTW) in the Bavarian Forest National Park (Germany). This bird, a keystone species of boreal and mountainous forests, is highly reliant on bark beetles dwelling in dead or dying trees. While previous studies showed a positive relationship between the TTW presence and the amount of deadwood as a limiting resource, we hypothesized a unimodal response with a negative effect of very high deadwood amounts and tested for effects of substrate quality. Based on 104 woodpecker presence or absence locations, habitat selection was modelled at four spatial scales reflecting different woodpecker home range sizes. The abundance of standing dead trees was the most important predictor, with an increase in the probability of TTW occurrence up to a threshold of 44–50 dead trees per hectare, followed by a decrease in the probability of occurrence. A positive relationship with the deadwood crown size indicated the importance of fresh deadwood. Remote sensing data allowed both an area-wide prediction of species occurrence and the derivation of ecological threshold values for deadwood quality and quantity for more informed conservation management.


2015 ◽  
Vol 41 (5) ◽  
Author(s):  
Edward Gilman ◽  
Maria Paz ◽  
Chris Harchick

Plants were grown in a 2 × 2 factorial combination of planting depth in nursery containers and at a landscape installation to study effects on root architecture, growth, and mechanical stability of Magnolia grandiflora L. Planting depth into containers or landscape soil had no impact on bending stress to tilt trunks 40 months after landscape planting, and impacted neither trunk diameter nor tree height growth 68 months later. Trees planted 128 mm deep into 170 L containers had more circling roots at landscape planting and 68 months later than trees planted shallow in containers. Root pruning at landscape planting reduced the container imprint rating on the root system to one-third of that absent root pruning with only a 4 mm reduction in trunk diameter growth over 68 months. Improvement in root architecture from root pruning likely outweighs the rarely encountered downside of slightly less anchorage in an extreme weather event simulated by winching trunks. Trees planted 5 cm above grade were slightly—but significantly—less stable in landscape than trees planted deeper (10 cm below grade). Root pruning at planting to remove roots on root ball periphery appeared to improve root architecture while only slightly impacting growth and anchorage.


Sign in / Sign up

Export Citation Format

Share Document