Dilatonic Dark Energy Model with Late Time de Sitter Attractor

2006 ◽  
Vol 46 (1) ◽  
pp. 170-183
Author(s):  
Z. G. Huang
2005 ◽  
Vol 20 (15) ◽  
pp. 1147-1154 ◽  
Author(s):  
YI-HUAN WEI

We discuss the late-time property of universe and phantom field in the SO(1, 1) dark energy model for the potential V = V0e-βΦα with α and β two positive constants. We assume in advance some conditions satisfied by the late-time field to simplify equations, which are confirmed to be correct from the eventual results. For α < 2, the field falls exponentially off and the phantom equation of state rapidly approaches -1. When α = 2, the kinetic energy ρk and the coupling energy ρc become comparable but there is always ρk < -ρc so that the phantom property of field proceeds to hold. The analysis on the perturbation to the late-time field Φ illustrates the square effective mass of the perturbation field is always positive and thus the phantom is stable. The universe considered currently may evade the future sudden singularity and will evolve to de Sitter expansion phase.


2017 ◽  
Vol 95 (12) ◽  
pp. 1215-1218 ◽  
Author(s):  
Amir F. Bahrehbakhsh

We investigate the Friedmann–Lemaître–Robertson–Walker (FLRW) type cosmology of the induced dark energy model and illustrate that the extra terms emerging from the fifth dimension can play the role of dark energy. The model predicts the expansion with deceleration at early time and acceleration in late time for an open universe.


Author(s):  
Ehsan Sadri

Abstract In this paper, we investigate a recent proposed model – so called the Tsallis holographic dark energy (THDE) model with consideration of the Hubble and the event future horizon as IR cutoffs. In this case, we consider the non-gravitational and phenomenological interaction between dark sectors. We fit the free parameters of the model using Pantheon Supernovae Type Ia data, Baryon Acoustic Oscillations, Cosmic Microwave Background, Gamma-Ray burst and the the local value of the Hubble constant. We examine the THDE model to check its compatibility with observational data using objective Information Criterion (IC). We find that the THDE models cannot be supported by observational data once the $$\Lambda $$ΛCDM is considered as the referring model. Therefore we re-examine the analysis with the standard holographic dark energy model (HDE) as another reference. Changing the $$\Lambda $$ΛCDM to main standard dark energy model (HDE), we observe the compatibility of the THDE models. Using the Alcock–Paczynski (AP) test we check the deviation of the model compared to $$\Lambda $$ΛCDM and HDE. Surveying the evolution of squared of sound speed $$v^2_s$$vs2 as an another test we check the stability of the interacting and non-interacting THDE models and we find that while the THDE model with the Hubble horizon as IR cutoff is unstable against the background perturbation, the future event horizon as IR cutoff show stability at the late time. In addition, using the modified version of the CAMB package, we observe the suppressing the CMB spectrum at small K-modes and large scale.


2017 ◽  
Vol 26 (03) ◽  
pp. 1750015 ◽  
Author(s):  
Orlando Luongo ◽  
Giovanni Battista Pisani ◽  
Antonio Troisi

In this work, we use cosmography to alleviate the degeneracy among cosmological models, proposing a way to parametrize matter and dark energy in terms of cosmokinematics quantities. The recipe of using cosmography allows to expand observable quantities in Taylor series and to directly compare those expansions with data. The strategy involves the expansions of [Formula: see text] and [Formula: see text], up to the second-order around [Formula: see text]. This includes additional cosmographic parameters which are fixed by current values of [Formula: see text] and [Formula: see text]. We therefore propose a fully self-consistent parametrization of the total energy density driving the late-time universe speed up. This stratagem does not remove all the degeneracy but enables one to pass from the model-dependent couple of coefficients, [Formula: see text] and [Formula: see text], to model-independent quantities determined from cosmography. Afterwards, we describe a feasible cosmographic dark energy model, in which matter is fixed whereas dark energy evolves by means of the cosmographic series. Our technique provides robust constraints on cosmokinematic parameters, permitting one to separately bound matter from dark energy densities. Our cosmographic dark energy model turns out to be one parameter only, but differently from the lambda cold dark matter ([Formula: see text]CDM) paradigm, it does not contain ansatz on the dark energy form. In addition, we even determine the free parameter of our model in suitable [Formula: see text] intervals through Monte Carlo analyses based on the Metropolis algorithm. We compare our results with the standard concordance model and we find that our treatment seems to indicate that dark energy slightly evolves in time, reducing to a pure cosmological constant only as [Formula: see text].


2006 ◽  
Vol 15 (09) ◽  
pp. 1501-1514 ◽  
Author(s):  
Z. G. HUANG ◽  
H. Q. LU

In this paper, we study the cosmological dynamics of dilatonic dark energy model and its phantom model — with negative kinetic energy. When the potential is taken as the form [Formula: see text], we investigate the existence of a late time attractor solution, and find out the sufficient condition. One interesting feature found by us is that the evolutions of components of comic density are locally fluctuating on the way to the late time attractor. But this local fluctuation cannot hold the trend that the equation of state ω evolves to -1 and the cosmic density parameter Ωσ evolves to 1, which are important features for a dark energy model that can meet the current observations.


2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Emre Dil

We propose a novel coupled dark energy model which is assumed to occur as aq-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider theq-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupledq-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950152 ◽  
Author(s):  
Ehsan Sadri ◽  
Martiros Khurshudyan

In this paper, we study an interacting new holographic dark energy model (NHDE) in DGP braneworld with a spatially flat FRW universe. Mainly, in this study we concentrate our attention on both interacting and noninteracting forms of the model. The study shows that the equation of state and the deceleration parameter depict an accelerated universe for all variety of interactions. On the other hand, the StateFinder analysis shows that the interacting and noninteracting behave similar to both quintessence and phantom dark energy and for the present value obey the behavior of quintessence. Moreover, the result of [Formula: see text]-diagnostic emphasizes on the result of the equation of state showing that the current model in high–[Formula: see text] stays in the quintessence era and in the late time has the Phantom-like behavior. By the use of the squared sound speed [Formula: see text] we find that the present mode has a good stability. In order to obtain the best fit values of the parameters in this work, we used the latest observational data (Pantheon, Boss DR12 and Planck 2015) implementing MCMC method by the use of EMCEE python package. We also employ AkaikeInformation Criterion (AIC) and Bayesian Information Criterion (BIC) model selection tools and comparethe model with both [Formula: see text]CDM and holographic Ricci dark energy as the reference models. We observe that the evidence against the interacting and noninteracting NHDE with consideration of both references is strongly positive and BIC rules out the NHDE model. Generally, the results of AIC and BIC state that the observational data do not favor the NHDE model.


2013 ◽  
Vol 91 (12) ◽  
pp. 1090-1092
Author(s):  
V. Fayaz ◽  
F. Felegary ◽  
H. Hossienkhani

Motivated by the work of Karami and Fehri (Phys. Lett. B, 684, 61 (2010)). We generalize their work with varying G. We investigate the new holographic dark energy model with varying G. We consider a spatially nonflat universe containing interacting new holographic dark energy with pressureless dark matter. We obtain the equation of state and the deceleration parameters. Also we reconstruct ωA for a = a0tn and H = [β/(α − 1)](1/t) in the late time universe. We also obtain q for a = a0tn and H = [β/(α − 1)](1/t) in the present time universe, which describes accelerated expansion of the universe.


Sign in / Sign up

Export Citation Format

Share Document