Black Hole Thermodynamics of Hořava-Lifshitz and IR Modified Ho řava-Lifshitz Gravity Theory

2011 ◽  
Vol 50 (6) ◽  
pp. 1776-1784 ◽  
Author(s):  
Shi-Wei Zhou ◽  
Wen-Biao Liu
2015 ◽  
Vol 24 (12) ◽  
pp. 1544014 ◽  
Author(s):  
Aron C. Wall

The Second Law of black hole thermodynamics is shown to hold for arbitrarily complicated theories of higher curvature gravity, so long as we allow only linearized perturbations to stationary black holes. Some ambiguities in Wald’s Noether charge method are resolved. The increasing quantity turns out to be the same as the holographic entanglement entropy calculated by Dong. It is suggested that only the linearization of the higher curvature Second Law is important, when consistently truncating a UV-complete quantum gravity theory.


1997 ◽  
Vol 486 (1-2) ◽  
pp. 131-148 ◽  
Author(s):  
Gilad Lifschytz ◽  
Miguel Ortiz

1991 ◽  
Vol 06 (33) ◽  
pp. 3039-3045 ◽  
Author(s):  
JISHNU DEY ◽  
MIRA DEY ◽  
MARCELO SCHIFFER ◽  
LAURO TOMIO

The entropy bound from black hole thermodynamics can be invoked to set limits for temperatures at which hadrons can survive as a confined system. We find that this implies that the pion can be formed in heavy ion collisions, much later than heavier mesons, for example the ρ-meson, when the fireball is cooler. The temperature found in a simple model agree qualitatively with experiment. We also suggest that this may be the reason why in pion interferometry experiments the space-time volume of the pion source seems large.


2015 ◽  
Vol 24 (11) ◽  
pp. 1530028 ◽  
Author(s):  
Steven Carlip ◽  
Dah-Wei Chiou ◽  
Wei-Tou Ni ◽  
Richard Woodard

We present a bird's-eye survey on the development of fundamental ideas of quantum gravity, placing emphasis on perturbative approaches, string theory, loop quantum gravity (LQG) and black hole thermodynamics. The early ideas at the dawn of quantum gravity as well as the possible observations of quantum gravitational effects in the foreseeable future are also briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document