scholarly journals Black hole thermodynamics from quantum gravity

1997 ◽  
Vol 486 (1-2) ◽  
pp. 131-148 ◽  
Author(s):  
Gilad Lifschytz ◽  
Miguel Ortiz
2015 ◽  
Vol 24 (11) ◽  
pp. 1530028 ◽  
Author(s):  
Steven Carlip ◽  
Dah-Wei Chiou ◽  
Wei-Tou Ni ◽  
Richard Woodard

We present a bird's-eye survey on the development of fundamental ideas of quantum gravity, placing emphasis on perturbative approaches, string theory, loop quantum gravity (LQG) and black hole thermodynamics. The early ideas at the dawn of quantum gravity as well as the possible observations of quantum gravitational effects in the foreseeable future are also briefly discussed.


2005 ◽  
Vol 14 (12) ◽  
pp. 2301-2305
Author(s):  
JOHN SWAIN

Black hole thermodynamics suggests that the maximum entropy that can be contained in a region of space is proportional to the area enclosing it rather than its volume. We argue that this follows naturally from loop quantum gravity and a result of Kolmogorov and Bardzin' on the the realizability of networks in three dimensions. This represents an alternative to other approaches in which some sort of correlation between field configurations helps limit the degrees of freedom within a region. It also provides an approach to thinking about black hole entropy in terms of states inside rather than on its surface. Intuitively, a spin network complicated enough to imbue a region with volume only lets that volume grow as quickly as the area bounding it.


2015 ◽  
Vol 24 (12) ◽  
pp. 1544014 ◽  
Author(s):  
Aron C. Wall

The Second Law of black hole thermodynamics is shown to hold for arbitrarily complicated theories of higher curvature gravity, so long as we allow only linearized perturbations to stationary black holes. Some ambiguities in Wald’s Noether charge method are resolved. The increasing quantity turns out to be the same as the holographic entanglement entropy calculated by Dong. It is suggested that only the linearization of the higher curvature Second Law is important, when consistently truncating a UV-complete quantum gravity theory.


2000 ◽  
Vol 09 (01) ◽  
pp. 91-95
Author(s):  
LIAO LIU ◽  
YONGGE MA

We show from one-loop quantum gravity and statistical thermodynamics that the thermodynamics of quantum foam in flat spacetime and Schwarzschild spacetime is exactly the same as that of Hawking–Unruh radiation in thermal equilibrium. This means we show unambiguously that Hawking–Unruh thermal radiation should contain thermal gravitons or the contribution of quantum spacetime foam. As a by-product, we give also the quantum gravity correction in one-loop approximation to the classical black hole thermodynamics.


2020 ◽  
Vol 29 (14) ◽  
pp. 2043022
Author(s):  
Ting-Ping Liu ◽  
Jin Pu ◽  
Yan Han ◽  
Qing-Quan Jiang

In this paper, by applying the generalized uncertainty principle (GUP) at the final stage of black hole evaporation, we have proposed a thermodynamic explanation for the minimal scale of quantum gravity, i.e. it may stem from the basic requirements of the third law of thermodynamics for quantum gravitation system. At the same time, we have interestingly found that the third law of black hole thermodynamics acts as a supervisor in quantum gravity spacetime to ensure the causality of the spacetime as that does in classical gravity.


2014 ◽  
Vol 24 (01) ◽  
pp. 1530005 ◽  
Author(s):  
Dah-Wei Chiou

This paper presents an "in-a-nutshell" yet self-contained introductory review on loop quantum gravity (LQG) — a background-independent, nonperturbative approach to a consistent quantum theory of gravity. Instead of rigorous and systematic derivations, it aims to provide a general picture of LQG, placing emphasis on the fundamental ideas and their significance. The canonical formulation of LQG, as the central topic of the paper, is presented in a logically orderly fashion with moderate details, while the spin foam theory, black hole thermodynamics, and loop quantum cosmology are covered briefly. Current directions and open issues are also summarized.


2008 ◽  
Vol 17 (13n14) ◽  
pp. 2359-2366 ◽  
Author(s):  
ALEX B. NIELSEN

We discuss some of the drawbacks of using event horizons to define black holes and suggest ways in which black holes can be described without event horizons, using trapping horizons. We show that these trapping horizons give rise to thermodynamic behavior and possibly Hawking radiation too. This raises the issue of whether the event horizon or the trapping horizon should be seen as the true boundary of a black hole. This difference is important if we believe that quantum gravity will resolve the central singularity of the black hole and clarifies several of the issues associated with black hole thermodynamics and information loss.


Sign in / Sign up

Export Citation Format

Share Document