scholarly journals Energy-Momentum Localization for a Space-Time Geometry Exterior to a Black Hole in the Brane World

2012 ◽  
Vol 52 (3) ◽  
pp. 757-764
Author(s):  
Irina Radinschi ◽  
Theophanes Grammenos ◽  
Andromahi Spanou
Keyword(s):  
2001 ◽  
Vol 16 (26) ◽  
pp. 1703-1710 ◽  
Author(s):  
DONAM YOUM

We study static brane configurations in the bulk background of the topological black holes in asymptotically flat space–time and find that such configurations are possible even for flat black hole horizon, unlike the AdS black hole case. We construct the brane world model with an orbifold structure S1/Z2 in such bulk background and study massless bulk scalar field.


Author(s):  
V. Vishal ◽  
B. Siddharth ◽  
C. Venkatachalam

A Black-hole is an astronomical entity which possesses infinite density at its gravitational singularity or singular point. The capacity of a black-hole to completely rip-off an entire solar system without leaving any evidence is to be noted. A debate has been going on over the past few decades regarding the information storage in black-holes. The discovery of Hawking radiation, which predicts complete evaporation of mass violates unitarity ie. Conservation of probability and energy fails. Recent discoveries suggest that regular remnant of black-hole survives evaporation , as a result information of the object devoured can be contained. These remnants are grouped into embedded sub-manifolds. These manifolds are the result of a five-dimensional constant curvature bulk in space-time. Five-dimensional gravity can be recovered from brane-world resulting from equations of bulk geometry. Gravity can be explained by space-time theory and also quantum theory in the form of Gravitons. On observing the manifold, the gravitons show deformations in dimensions, rather than being constant. The perturbations in geometry can be related to embedding functions which should remain differentiable and regular. Regularity is related to the inverse functions theorem. Manifold observations followed by a mathematical approach can possibly retain information about objects devoured by the black-hole.


2005 ◽  
Vol 20 (26) ◽  
pp. 6039-6049 ◽  
Author(s):  
XIN ZHANG

A toy model based upon the q-deformation description for studying the radiation spectrum of black hole is proposed. The starting point is to make an attempt to consider the space–time noncommutativity in the vicinity of black hole horizon. We use a trick that all the space–time noncommutative effects are ascribed to the modification of the behavior of the radiation field of black hole and a kind of q-deformed degrees of freedom are postulated to mimic the radiation particles that live on the noncommutative space–time, meanwhile the background metric is preserved as usual. We calculate the radiation spectrum of Schwarzschild black hole in this framework. The new distribution deviates from the standard thermal spectrum evidently. The result indicates that some correlation effect will be introduced to the system if the noncommutativity is taken into account. In addition, an infrared cutoff of the spectrum is the prediction of the model.


2018 ◽  
Vol 33 (27) ◽  
pp. 1850159 ◽  
Author(s):  
Shad Ali ◽  
Xin-Yang Wang ◽  
Wen-Biao Liu

Christodoulou and Rovelli have shown that the interior volume of a Schwarzschild black hole grows linearly with time. The entropy of a scalar field in this interior volume of a Schwarzschild black hole has been calculated and shown to increase linearly with the advanced time too. In this paper, considering Hawking radiation from a d-dimensional charged black hole, we investigate the proportional relation between the entropy of the scalar field in the interior volume and the Bekenstein–Hawking entropy using the method of our previous work. We also derive this proportionality relation using Hamiltonian analysis and find a consistent result. We then investigate the proportionality coefficient with respect to d and find that it gradually decreases as the dimension of space–time increases.


2009 ◽  
Vol 18 (04) ◽  
pp. 599-611 ◽  
Author(s):  
ALFRED MOLINA ◽  
NARESH DADHICH

By considering the product of the usual four-dimensional space–time with two dimensional space of constant curvature, an interesting black hole solution has recently been found for Einstein–Gauss–Bonnet gravity. It turns out that this as well as all others could easily be made to radiate Vaidya null dust. However, there exists no Kerr analog in this setting. To get the physical feel of the four-dimensional black hole space–times, we study asymptotic behavior of stresses at the two ends, r → 0 and r → ∞.


2018 ◽  
Vol 50 (7) ◽  
Author(s):  
Jian-Ping Hu ◽  
Yu Zhang ◽  
Li-Li Shi ◽  
Peng-Fei Duan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document