Area Spectrum of a Kerr-Newman Black Hole Via an Adiabatic Invariant

2014 ◽  
Vol 53 (12) ◽  
pp. 4407-4413 ◽  
Author(s):  
Xiao-Xiong Zeng ◽  
Qiang Li
2005 ◽  
Vol 20 (25) ◽  
pp. 1923-1932 ◽  
Author(s):  
MOHAMMAD R. SETARE ◽  
ELIAS C. VAGENAS

Motivated by the recent interest in quantization of black hole area spectrum, we consider the area spectrum of Kerr and extremal Kerr black holes. Based on the proposal by Bekenstein and others that the black hole area spectrum is discrete and equally spaced, we implement Kunstatter's method to derive the area spectrum for the Kerr and extremal Kerr black holes. The real part of the quasinormal frequencies of Kerr black hole used for this computation is of the form mΩ where Ω is the angular velocity of the black hole horizon. The resulting spectrum is discrete but not as expected uniformly spaced. Thus, we infer that the function describing the real part of quasinormal frequencies of Kerr black hole is not the correct one. This conclusion is in agreement with the numerical results for the highly damped quasinormal modes of Kerr black hole recently presented by Berti, Cardoso and Yoshida. On the contrary, extremal Kerr black hole is shown to have a discrete area spectrum which in addition is evenly spaced. The area spacing derived in our analysis for the extremal Kerr black hole area spectrum is not proportional to ln 3. Therefore, it does not give support to Hod's statement that the area spectrum [Formula: see text] should be valid for a generic Kerr–Newman black hole.


Author(s):  
Chengzhou Liu ◽  
Jin-Jun Tao

Abstract Quantum gravity effects on spectroscopy for the charged rotating gravity’s rainbow are investigated. By utilizing an action invariant obtained from particles tunneling through the event horizon, the entropy and area spectrum for the modified Kerr-Newman black hole are derived. The equally spaced entropy spectrum characteristic of Bekenstein’s original derivation is recovered. And, the entropy spectrum is independent of the energy of the test particles, although the gravity’s rainbow itself is the energy dependent. Such, the quantum gravity effects of gravity’s rainbow has no influence on the entropy spectrum. On the other hand, due to the spacetime quantum effects, the obtained area spectrum is different from the original Bekenstein spectrum. It is not equidistant and has the dependence on the horizon area. And that, by analyzing the area spectrum from a specific rainbow functions, a minimum area with Planck scale is derived for the event horizon. At this, the area quantum is zero and the black hole radiation stops. Thus, the black hole remnant for the gravity’s rainbow is obtained from the area quantization. In addition, the entropy for the modified Kerr-Newman black hole is calculated and the quantum correction to the area law is obtained and discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Shiwei Zhou ◽  
Ge-Rui Chen ◽  
Yong-Chang Huang

As a renormalizable theory of gravity, Hořava-Lifshitz gravity, might be an ultraviolet completion of general relativity and reduces to Einstein gravity with a nonvanishing cosmological constant in infrared. Kehagias and Sfetsos obtained a static spherically symmetric black hole solution called KS black hole in the IR modified Hořava-Lifshitz theory. In this paper, the entropy spectrum and area spectrum of a KS black hole are investigated based on the proposal of adiabatic invariant quantity. By calculating the action of producing a pair of particles near the horizon, it is obtained that the action of the system is exactly equivalent to the change of black hole entropy, which is an adiabatic invariant quantity. With the help of Bohr-Sommerfeld quantization rule, it is concluded that the entropy spectrum is discrete and equidistant spaced and the area spectrum is not equidistant spaced, which depends on the parameter of gravity theory. Some summary and discussion will be given in the last.


2013 ◽  
Vol 28 (33) ◽  
pp. 1350149 ◽  
Author(s):  
SANEESH SEBASTIAN ◽  
V. C. KURIAKOSE

We study the thermodynamics and spectroscopy of a (2+1)-dimensional black hole proposed by Mandal et al.1 [Mod. Phys. Lett. A6, 1685 (1991)]. We put the background spacetime in Kruskal like co-ordinate and find period with respect to Euclidean time. Different thermodynamic quantities like entropy, specific heat, temperature etc. are obtained. The adiabatic invariant for the black hole is found and quantized using Bohr–Sommerfeld quantization rule. The study shows that the area spectrum of MSW black hole is equally spaced and the value of spacing is found to be ℏ.


2017 ◽  
Vol 34 (23) ◽  
pp. 235008 ◽  
Author(s):  
Chen-Yu Liu ◽  
Da-Shin Lee ◽  
Chi-Yong Lin

2012 ◽  
Vol 44 (11) ◽  
pp. 2865-2872 ◽  
Author(s):  
Hui-Ling Li ◽  
Rong Lin ◽  
Li-Ying Cheng

Sign in / Sign up

Export Citation Format

Share Document