Anti-inflammatory effects of Chrysophyllum cainito fruit extract in lipopolysaccharide-stimulated mouse peritoneal macrophages

Author(s):  
Víctor Ermilo Arana-Argáez ◽  
Gonzalo J. Mena-Rejón ◽  
Julio Cesar Torres-Romero ◽  
Julio Cesar Lara-Riegos ◽  
Gumersindo López-Mirón ◽  
...  
2014 ◽  
Vol 9 (11) ◽  
pp. 1934578X1400901
Author(s):  
Wei Chen ◽  
Ying-Ying Zhang ◽  
Zhuo Wang ◽  
Xiao-Hua Luo ◽  
Wan-Chun Sun ◽  
...  

Two new (3, 4) and two known phenolic derivatives (1, 2) were isolated from Radix Astragali. The structures of 1–4 were elucidated by extensive spectroscopic analysis. The anti-inflammatory activities of the isolated compounds were evaluated in LPS-induced mouse peritoneal macrophages. All four compounds exhibited potent inhibitory effects on TNF-α production and TNF-α, COX-2, IL-1β, IL-6 and iNOS mRNA expression at 50 μM.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
E. Sánchez-Miranda ◽  
J. Lemus-Bautista ◽  
S. Pérez ◽  
J. Pérez-Ramos

Kramecyne is a new peroxide, it was isolated fromKrameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases.


Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 480
Author(s):  
Alma M. Astudillo ◽  
Clara Meana ◽  
Miguel A. Bermúdez ◽  
Alfonso Pérez-Encabo ◽  
María A. Balboa ◽  
...  

Positional isomers of hexadecenoic acid are considered as fatty acids with anti-inflammatory properties. The best known of them, palmitoleic acid (cis-9-hexadecenoic acid, 16:1n-7), has been identified as a lipokine with important beneficial actions in metabolic diseases. Hypogeic acid (cis-7-hexadecenoic acid, 16:1n-9) has been regarded as a possible biomarker of foamy cell formation during atherosclerosis. Notwithstanding the importance of these isomers as possible regulators of inflammatory responses, very little is known about the regulation of their levels and distribution and mobilization among the different lipid pools within the cell. In this work, we describe that the bulk of hexadecenoic fatty acids found in mouse peritoneal macrophages is esterified in a unique phosphatidylcholine species, which contains palmitic acid at the sn-1 position, and hexadecenoic acid at the sn-2 position. This species markedly decreases when the macrophages are activated with inflammatory stimuli, in parallel with net mobilization of free hexadecenoic acid. Using pharmacological inhibitors and specific gene-silencing approaches, we demonstrate that hexadecenoic acids are selectively released by calcium-independent group VIA phospholipase A2 under activation conditions. While most of the released hexadecenoic acid accumulates in free fatty acid form, a significant part is also transferred to other phospholipids to form hexadecenoate-containing inositol phospholipids, which are known to possess growth-factor-like-properties, and are also used to form fatty acid esters of hydroxy fatty acids, compounds with known anti-diabetic and anti-inflammatory properties. Collectively, these data unveil new pathways and mechanisms for the utilization of palmitoleic acid and its isomers during inflammatory conditions, and raise the intriguing possibility that part of the anti-inflammatory activity of these fatty acids may be due to conversion to other lipid mediators.


2008 ◽  
Vol 36 (06) ◽  
pp. 1145-1158 ◽  
Author(s):  
Su-Jin Kim ◽  
Jung-Sun Kim ◽  
In-Young Choi ◽  
Dong-Hyun Kim ◽  
Min-Cheol Kim ◽  
...  

Schizonepeta tenuifolia (ST) is a well-known herb to treat the cold and its associated headache. However, the anti-inflammatory mechanism of ST in mouse peritoneal macrophages is not clear. In this study, we demonstrated that ST inhibited lipopolysaccaride (LPS)-induced tumor necrosis factor (TNF)-α and interleukin (IL)-6 production. The maximal inhibition rate of TNF-α and IL-6 production by ST (2 mg/ml) was 48.01 ± 2.8% and 56.45 ± 2.8%, respectively. During the inflammatory process, cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) were increased in mouse peritoneal macrophages. However, treated with ST decreased the protein level of COX-2 and iNOS, as well as the production of PGE2and NO in LPS-stimulated mouse peritoneal macrophages. In addition, ST inhibited the phosphorylation of MAPK. Taken together, the results of this study suggest an important molecular mechanism by which ST reduces inflammation, which may explain its beneficial effect in the regulation of inflammatory reactions.


2011 ◽  
Vol 39 (01) ◽  
pp. 171-181 ◽  
Author(s):  
Su-Jin Kim ◽  
Jae-Young Um ◽  
Seung-Heon Hong ◽  
Ju-Young Lee

Hyperoside (quercetin-3-O-galactoside) is a flavonoid compound mainly found in the herb plants Hypericum perforatum L and Crataegus pinnatifida. Although hyperoside has a variety of pharmacological effects including anti-viral, anti-oxidative, and anti-apoptotic activities, the anti-inflammatory mechanism of hyperoside in mouse peritoneal macrophages remains unclear. In this study, hyperoside was shown to exert an anti-inflammatory action through suppressed production of tumor necrosis factor, interleukin-6, and nitric oxide in lipopolysaccharide-stimulated mouse peritoneal macrophages. The maximal inhibition rate of tumor necrosis factor-α, interleukin-6, and nitric oxide production by 5 μM hyperoside was 32.31 ± 2.8%, 41.31 ± 3.1%, and 30.31 ± 4.1%, respectively. In addition, hyperoside inhibited nuclear factor-κB activation and IκB-α degradation. The present study suggests that an important molecular mechanism by hyperoside reduces inflammation, which might explain its beneficial effect in the regulation of inflammatory reactions.


Sign in / Sign up

Export Citation Format

Share Document