Friction and Heat Transfer in a Laminar Separated Flow behind a Rectangular Step with Porous Injection or Suction

2006 ◽  
Vol 47 (1) ◽  
pp. 12-21 ◽  
Author(s):  
S. R. Batenko ◽  
V. I. Terekhov
1970 ◽  
Author(s):  
V. P. Motulevich ◽  
M.S. Bespalov ◽  
A.N. Boyko ◽  
V. M. Eroshenko ◽  
E. D. Sergievskii ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1005
Author(s):  
Viktor I. Terekhov

The study of flows with a high degree of turbulence in boundary layers, near-wall jets, gas curtains, separated flows behind various obstacles, as well as during combustion is of great importance for increasing energy efficiency of the flow around various elements in the ducts of gas-dynamic installations. This paper gives some general characteristics of experimental work on the study of friction and heat transfer on a smooth surface, in near-wall jets, and gas curtains under conditions of increased free-stream turbulence. Taking into account the significant effect of high external turbulence on dynamics and heat transfer of separated flows, a similar effect on the flow behind various obstacles is analyzed. First of all, the classical cases of flow separation behind a single backward-facing step and a rib are considered. Then, more complex cases of the flow around a rib oriented at different angles to the flow are analyzed, as well as a system of ribs and a transverse trench with straight and inclined walls in a turbulent flow around them. The features of separated flow in a turbulized stream around a cylinder, leading to an increase in the width of the vortex wake, frequency of vortex separation, and increase in the average heat transfer coefficient are analyzed. The experimental results of the author are compared with data of other researchers. The structure of separated flow at high turbulence—characteristic dimensions of the separation region, parameters of the mixing layer, and pressure distribution—are compared with the conditions of low-turbulent flow. Much attention is paid to thermal characteristics: temperature profiles across the shear layer, temperature distributions over the surface, and local and average heat transfer coefficients. It is shown that external turbulence has a much stronger effect on the separated flow than on the boundary layer on a flat surface. For separated flows, its intensifying effect on heat transfer is more pronounced behind a rib than behind a step. The factor of heat transfer intensification by external turbulence is most pronounced in the transverse cavity and in the system of ribs.


Author(s):  
Nicolas Gourdain ◽  
Laurent Y. M. Gicquel ◽  
Remy Fransen ◽  
Elena Collado ◽  
Tony Arts

This paper investigates the capability of numerical simulations to estimate unsteady flows and wall heat fluxes in turbine components with both structured and unstructured flow solvers. Different numerical approaches are assessed, from steady-state methods based on the Reynolds Averaged Navier-Stokes (RANS) equations to more sophisticated methods such as the Large Eddy Simulation (LES) technique. Three test cases are investigated: the vortex shedding induced by a turbine guide vane, the wall heat transfer in another turbine guide vane and a separated flow phenomenon in an internal turbine cooling channel. Steady flow simulations usually fail to predict the mean effects of unsteady flows (such as vortex shedding) and wall heat transfer, mainly because laminar-to turbulent transition and the inlet turbulent intensity are not correctly taken into account. Actually, only the LES (partially) succeeds to accurately estimate unsteady flows and wall heat fluxes in complex configurations. The results presented in this paper indicate that this method considerably improves the level of physical description (including boundary layer transition). However, the LES still requires developments and validations for such complex flows. This study also points out the dependency of results to parameters such as the freestream turbulence intensity. When feasible solutions obtained with both structured and unstructured flow solvers are compared to experimental data.


1983 ◽  
Vol 105 (4) ◽  
pp. 862-869 ◽  
Author(s):  
R. S. Amano ◽  
M. K. Jensen ◽  
P. Goel

An experimental and numerical study is reported on heat transfer in the separated flow region created by an abrupt circular pipe expansion. Heat transfer coefficients were measured along the pipe wall downstream from an expansion for three different expansion ratios of d/D = 0.195, 0.391, and 0.586 for Reynolds numbers ranging from 104 to 1.5 × 105. The results are compared with the numerical solutions obtained with the k ∼ ε turbulence model. In this computation a new finite difference scheme is developed which shows several advantages over the ordinary hybrid scheme. The study also covers the derivation of a new wall function model. Generally good agreement between the measured and the computed results is shown.


2005 ◽  
Vol 127 (5) ◽  
pp. 865-871 ◽  
Author(s):  
Kazuaki Sugawara ◽  
Hiroyuki Yoshikawa ◽  
Terukazu Ota

The LES method was applied to analyze numerically an unsteady turbulent separated and reattached flow and heat transfer in a symmetric expansion plane channel of expansion ratio 2.0. The Smagorinsky model was used in the analysis and fundamental equations were discretized by means of the finite difference method, and their resulting finite difference equations were solved using the SMAC method. The calculations were conducted for Re=15,000. It is found that the present numerical results, in general, agree well with the previous experimental ones. The complicated vortical flow structures in the channel and their correlations with heat transfer characteristics are visualized through various fields of flow quantities.


1964 ◽  
Vol 86 (2) ◽  
pp. 259-264 ◽  
Author(s):  
R. A. Seban

Experiments on a system in which separation of a turbulent boundary layer occurred at a downward step in the surface of a plate and reattached on the plate downstream of the step have produced additional results for the local heat-transfer coefficient and for the velocity and temperature distribution in the separated and reattached regions of the flow. In neither region was there found the kind of similarity near the wall that characterizes flows that are dominated by the friction at the wall, so that even this first element of the usual rationalization of the heat transfer is unavailable for the interpretation of the results. The effect of suction or injection through a slot at the base of the step is also indicated and this demonstrates relatively small effects on both the pressure distribution and the local heat-transfer coefficient.


Sign in / Sign up

Export Citation Format

Share Document