In vitro five brown algae extracts for efficiency of ruminal fermentation and methane yield

2021 ◽  
Vol 33 (2) ◽  
pp. 1253-1262
Author(s):  
You Young Choi ◽  
Nyeon Hak Shin ◽  
Shin Ja Lee ◽  
Ye Jun Lee ◽  
Hyun Sang Kim ◽  
...  
Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 34
Author(s):  
Mélody Dutot ◽  
Elodie Olivier ◽  
Sophie Fouyet ◽  
Romain Magny ◽  
Karim Hammad ◽  
...  

Phlorotannins are polyphenols occurring exclusively in some species of brown algae, known for numerous biological activities, e.g., antioxidant, antiproliferative, antidiabetic, and antiallergic properties. Their effects on the response of human lung cells to benzo[a]pyrene (B[a]P) has not been characterized. Our objective was to in vitro evaluate the effects of a phlorotannin-rich extract obtained from the brown algae Ascophyllum nodosum and Fucus vesiculosus on B[a]P cytotoxic effects. The A549 cell line was incubated with B[a]P for 48 and 72 h in the presence or absence of the brown algae extract. Cytochrome P450 activity, activation of P2X7 receptor, F-actin disorganization, and loss of E-cadherin expression were assessed using microplate cytometry and fluorescence microscopy. Relative to control, incubation with the brown algae extract was associated with lower B[a]P-induced CYP1 activity, lower P2X7 receptor activation, and lower reactive oxygen species production. The brown algae extract inhibited the alterations of F-actin arrangement and the downregulation of E-cadherin expression. We identified a phlorotannins-rich extract that could be deeper investigated as a cancer chemopreventive agent to block B[a]P-mediated carcinogenesis.


Author(s):  
Marwa E. Atya ◽  
Amr El-Hawiet ◽  
Mohamed A. Alyeldeen ◽  
Doaa A. Ghareeb ◽  
Mohamed M. Abdel-Daim ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 416
Author(s):  
Sami I. Alzarea ◽  
Abeer H. Elmaidomy ◽  
Hani Saber ◽  
Arafa Musa ◽  
Mohammad M. Al-Sanea ◽  
...  

LC-MS-assisted metabolomic profiling of the Red Sea-derived brown algae Sargassum cinereum “Sargassaceae” dereplicated eleven compounds 1–11. Further phytochemical investigation afforded two new aryl cresol 12–13, along with eight known compounds 14–21. Both new metabolites, along with 19, showed moderate in vitro antiproliferative activity against HepG2, MCF-7, and Caco-2. Pharmacophore-based virtual screening suggested both 5-LOX and 15-LOX as the most probable target linked to their observed antiproliferative activity. The in vitro enzyme assays revealed 12 and 13 were able to inhibit 5-LOX more preferentially than 15-LOX, while 19 showed a convergent inhibitory activity toward both enzymes. Further in-depth in silico investigation revealed the molecular interactions inside both enzymes’ active sites and explained the varying inhibitory activity for 12 and 13 toward 5-LOX and 15-LOX.


2008 ◽  
Vol 142 (1-2) ◽  
pp. 99-110 ◽  
Author(s):  
Solomon Tefera ◽  
V. Mlambo ◽  
B.J. Dlamini ◽  
A.M. Dlamini ◽  
K.D.N. Koralagama ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 761
Author(s):  
Olinda Guerreiro ◽  
Susana P. Alves ◽  
Mónica Costa ◽  
Maria F. Duarte ◽  
Eliana Jerónimo ◽  
...  

Cistus ladanifer (rockrose) is a perennial shrub quite abundant in the Mediterranean region, and it is a rich source in secondary compounds such as condensed tannins (CTs). Condensed tannins from C. ladanifer were able to change the ruminal biohydrogenation (BH), increasing the t11–18:1 and c9,t11–18:2 production. However, the adequate conditions of the C. ladanifer CTs used to optimize the production of t11–18:1 and c9,t11–18:2 is not yet known. Thus, we tested the effect of increasing the doses of C. ladanifer CT extract (0, 25, 50, 75 and 100 g/kg dry matter (DM)) on in vitro rumen BH. Five in vitro batch incubations replicates were conducted using an oil supplemented high-concentrate substrate, incubated for 24 h with 6 mL of buffered ruminal fluid. Volatile fatty acids (VFAs) and long chain fatty acids (FA) were analyzed at 0 h and 24 h, and BH of c9–18:1, c9, c12–18:2 and c9, c12, c15–18:3, and BH products yield were computed. Increasing doses of C. ladanifer CTs led to a moderate linear decrease (p < 0.001) of the VFA production (a reduction of 27% with the highest dose compared to control). The disappearance of c9–18:1 and c9,c12–18:2 as well as the production of t11–18:1 and c9, t11:18:2 was not affected by increasing doses of C. ladanifer CTs, and only the disappearance of c9, c12, c15–18:3 suffered a mild linear decrease (a reduction of 24% with the highest dose compared to control). Nevertheless, increasing the C. ladanifer CT dose led to a strong depression of microbial odd and branched fatty acids and of dimethyl acetals production (less than 65% with the highest dose compared to control), which indicates that microbial growth was more inhibited than fermentative and biohydrogenation activities, in a possible adaptative response of microbial population to stress induced to CTs and polyunsaturated fatty acids. The ability of C. ladanifer to modulate the ruminal BH was not verified in the current in vitro experimental conditions, emphasizing the inconsistent BH response to CTs and highlighting the need to continue seeking the optimal conditions for using CTs to improve the fatty acid profile of ruminant fat.


2013 ◽  
Vol 179 (1-4) ◽  
pp. 46-53 ◽  
Author(s):  
M.M.Y. Elghandour ◽  
A.Z.M. Salem ◽  
M. Gonzalez-Ronquillo ◽  
J.L. Bórquez ◽  
H.M. Gado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document