scholarly journals Effects of Increasing Doses of Condensed Tannins Extract from Cistus ladanifer L. on In Vitro Ruminal Fermentation and Biohydrogenation

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 761
Author(s):  
Olinda Guerreiro ◽  
Susana P. Alves ◽  
Mónica Costa ◽  
Maria F. Duarte ◽  
Eliana Jerónimo ◽  
...  

Cistus ladanifer (rockrose) is a perennial shrub quite abundant in the Mediterranean region, and it is a rich source in secondary compounds such as condensed tannins (CTs). Condensed tannins from C. ladanifer were able to change the ruminal biohydrogenation (BH), increasing the t11–18:1 and c9,t11–18:2 production. However, the adequate conditions of the C. ladanifer CTs used to optimize the production of t11–18:1 and c9,t11–18:2 is not yet known. Thus, we tested the effect of increasing the doses of C. ladanifer CT extract (0, 25, 50, 75 and 100 g/kg dry matter (DM)) on in vitro rumen BH. Five in vitro batch incubations replicates were conducted using an oil supplemented high-concentrate substrate, incubated for 24 h with 6 mL of buffered ruminal fluid. Volatile fatty acids (VFAs) and long chain fatty acids (FA) were analyzed at 0 h and 24 h, and BH of c9–18:1, c9, c12–18:2 and c9, c12, c15–18:3, and BH products yield were computed. Increasing doses of C. ladanifer CTs led to a moderate linear decrease (p < 0.001) of the VFA production (a reduction of 27% with the highest dose compared to control). The disappearance of c9–18:1 and c9,c12–18:2 as well as the production of t11–18:1 and c9, t11:18:2 was not affected by increasing doses of C. ladanifer CTs, and only the disappearance of c9, c12, c15–18:3 suffered a mild linear decrease (a reduction of 24% with the highest dose compared to control). Nevertheless, increasing the C. ladanifer CT dose led to a strong depression of microbial odd and branched fatty acids and of dimethyl acetals production (less than 65% with the highest dose compared to control), which indicates that microbial growth was more inhibited than fermentative and biohydrogenation activities, in a possible adaptative response of microbial population to stress induced to CTs and polyunsaturated fatty acids. The ability of C. ladanifer to modulate the ruminal BH was not verified in the current in vitro experimental conditions, emphasizing the inconsistent BH response to CTs and highlighting the need to continue seeking the optimal conditions for using CTs to improve the fatty acid profile of ruminant fat.

2016 ◽  
Vol 56 (3) ◽  
pp. 437 ◽  
Author(s):  
S. A. Terry ◽  
R. S. Ribeiro ◽  
D. S. Freitas ◽  
G. D. Delarota ◽  
L. G. R. Pereira ◽  
...  

The present study examined the effects of Tithonia diversifolia on in vitro methane (CH4) production and ruminal fermentation characteristics. The experiment was conducted as a completely randomised design (CRD) using a control (0% T. diversifolia) and three treatment groups with different concentrations (6.9%, 15.2%, 29.2%) of T. diversifolia, which replaced up to 15.2% and 14% dry matter (DM) of fresh sugarcane and concentrates, respectively. Ruminal fluid was obtained from two ruminally cannulated non-lactating Holstein × Zebu heifers maintained on a diet consisting of T. diversifolia, fresh sugarcane and 4 kg of concentrates. The inclusion of T. diversifolia had no effect (P ≥ 0.15) on cumulative gas production (mL, mL/g incubated DM, mL/g digested DM) or in vitro DM disappearance (%). Carbon dioxide (%, mL, mL/g incubated DM) linearly decreased (P ≤ 0.001) and CH4 (%, mL, mL/g incubated DM) quadratically increased (P ≤ 0.01) with increasing concentrations of T. diversifolia replacing fresh sugarcane and concentrates. The total volatile fatty acids (mM) and acetate (A) proportion of total volatile fatty acids (mmol/100 mmol) linearly increased (P < 0.01) with the increasing inclusion of T. diversifolia. Butyrate (mmol/100 mmol) increased quadratically (P ≤ 0.02), while propionate (P; mmol/100 mmol) decreased quadratically (P < 0.02). The A : P ratio increased linearly (P < 0.0001) with increasing amounts of T. diversifolia in the diet. These results indicated that increasing the amount of Tithonia diversifolia in the substrate DM increased the A : P ratio, which resulted in a six-fold increase of CH4 production when fresh sugarcane and concentrates were replaced at up to 15.2% and 14% (DM basis), respectively.


2012 ◽  
Vol 57 (No. 1) ◽  
pp. 10-18 ◽  
Author(s):  
F. Leiber ◽  
C. Kunz ◽  
M. Kreuzer

It was hypothesized that buckwheat, especially its flowers, influences foregut fermentation in ruminant animals because it is rich in phenolic compounds. The entire fresh aerial buckwheat herb, or its parts (leaves, stems, flowers and grain), were incubated for 24 h together with pure ryegrass (1:1, dry matter basis) in an in vitro ruminal fermentation system (Hohenheim Gas Test). Additionally ryegrass, supplemented with 0, 0.5, 5, or 50 mg rutin trihydrate/g dry matter, was incubated. Contents of extractable phenols (g/kg dry matter) were the highest in buckwheat flowers (88), followed by leaves (63), and the lowest in ryegrass (8). The levels of production of total gas and volatile fatty acids demonstrated that the nutritional value of buckwheat was slightly lower than that of ryegrass. Compared to ryegrass alone, ruminal transformation of dietary protein-N <br />into ammonia was lower with 50 mg rutin, buckwheat flowers and buckwheat leaves. Thus, these treatments appeared to have partly protected dietary protein from ruminal degradation. Rutin, at the highest level, buckwheat flowers and the total aerial fraction of the buckwheat plant suppressed methane per unit of total gas by &gt; 10%, either at elevated (rutin) or reduced total gas volume. This indicates that the ways of the influence on the ruminal fermentation pattern differed between pure rutin and buckwheat. In vivo studies have to confirm these potentially beneficial effects of buckwheat if used as forage for ruminants and clarify the role of further phenolic compounds present in buckwheat. Abbreviations: DM = dry matter, HGT = Hohenheim Gas Test, NDF = neutral detergent fibre, TEP = total extractable phenols, VFA = volatile fatty acids


2021 ◽  
Vol 9 (2) ◽  
pp. 337
Author(s):  
Nanditha Murali ◽  
Keerthi Srinivas ◽  
Birgitte K. Ahring

Volatile fatty acids (VFA) are industrially versatile chemicals and have a major market. Although currently produced from petrochemicals, chemical industries are moving towards more bio-based VFA produced from abundant, cheap and renewable sources such as lignocellulosic biomass. In this study, we examined the effect of bioaugmentation with homoacetogenic bacteria for increasing VFA production in lignocellulose fermentation process. The central hypothesis of this study was that inhibition of methanogenesis in an in vitro rumen bioreactor fed with lignocellulosic biomass hydrolysate increases the hydrogen partial pressure, which can be redirected towards increased VFA production, particularly acetic acid, through targeted bioaugmentation with known homoacetogenic bacteria. In this study, methanogenesis during ruminal fermentation of wet exploded corn stover was initially inhibited with 10 mM of 2-bromoethanesulfonate (BES), followed by bioaugmentation with either Acetitomaculum ruminis and Acetobacterium woodii in two separate bioreactors. During the inhibition phase, we found that addition of BES decreased the acetic acid yield by 24%, while increasing headspace hydrogen from 1% to 60%. After bioaugmentation, the headspace hydrogen was consumed in both bioreactors and the concentration of acetic acids increased 45% when A. ruminis was added and 70% with A. woodii added. This paper demonstrates that mixed microbial fermentation can be manipulated to increase VFA production through bioaugmentation.


2014 ◽  
Vol 152 (6) ◽  
pp. 981-993 ◽  
Author(s):  
A. CIESLAK ◽  
P. ZMORA ◽  
A. STOCHMAL ◽  
L. PECIO ◽  
W. OLESZEK ◽  
...  

SUMMARYAlthough the effect of saponins or saponin-containing plants on rumen microorganisms and rumen fermentation has been intensively investigated, this issue still requires special attention. Many of the phenomena occurring in the rumen related to dietary saponin supplementation are still not fully understood.Saponaria officinalisis a triterpenoid saponin-containing plant; thus, the aim of the present study was to evaluate the effect ofS. officinalisL. powdered root, methanolic extract of theS. officinalisroot (SOR) and the effect of the separated fractions (polysaccharides, saponins and phenolics) ofS. officinalison rumen methanogenesis, microbial population and rumen fermentation characteristics in anin vitrobatch culture fermentation system. The powdered root (raw plant material) andS. officinalisextract (SOE) decreasedin vitromethane production and consequently reduced the microbial population in a dose-dependent manner. The inhibition of methanogenesis was accompanied by changes in the volatile fatty acids profile.In vitrodry matter digestibility was not affected by any of the secondary compounds applied. The highest applied doses of SOE caused a higher reduction in methanogenesis (33·5v. 14·4%) than the highest doses of powdered root form. Such results suggest that the basic components of the SOR could interact with phytochemicals or that the phytochemicals became physically less available for microbiota, resulting in a decreased antimethanogenic activity of the powdered rootv. the extract. Among all the fractions selected, the saponin fraction exerted the greatest impact on ruminal fermentation. In conclusion, saponins decreased methane production by 29% in comparison with the control. This decrease was related to the reduction in protozoa and methanogen counts. It is proposed thatS. officinalishas the potential to inhibit rumen methanogenesis without affecting rumen fermentation adversely.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Yichong Wang ◽  
Sijiong Yu ◽  
Yang Li ◽  
Shuang Zhang ◽  
Xiaolong Qi ◽  
...  

Nutritional strategies can be employed to mitigate greenhouse emissions from ruminants. This article investigates the effects of polyphenols extracted from the involucres of Castanea mollissima Blume (PICB) on in vitro rumen fermentation. Three healthy Angus bulls (350 ± 50 kg), with permanent rumen fistula, were used as the donors of rumen fluids. A basic diet was supplemented with five doses of PICB (0%–0.5% dry matter (DM)), replicated thrice for each dose. Volatile fatty acids (VFAs), ammonia nitrogen concentration (NH3-N), and methane (CH4) yield were measured after 24 h of in vitro fermentation, and gas production was monitored for 96 h. The trial was carried out over three runs. The results showed that the addition of PICB significantly reduced NH3-N (p < 0.05) compared to control. The 0.1%–0.4% PICB significantly decreased acetic acid content (p < 0.05). Addition of 0.2% and 0.3% PICB significantly increased the propionic acid content (p < 0.05) and reduced the acetic acid/propionic acid ratio, CH4 content, and yield (p < 0.05). A highly significant quadratic response was shown, with increasing PICB levels for all the parameters abovementioned (p < 0.01). The increases in PICB concentration resulted in a highly significant linear and quadratic response by 96-h dynamic fermentation parameters (p < 0.01). Our results indicate that 0.2% PICB had the best effect on in-vitro rumen fermentation efficiency and reduced greenhouse gas production.


2012 ◽  
Vol 36 (1) ◽  
pp. 93-99 ◽  
Author(s):  
João Luiz Pratti Daniel ◽  
João Chrysostomo de Resende Júnior

Volatile fatty acids (VFA) absorption and metabolic capacity of rumen and omasum were compared, in vitro. Fragments of rumen wall and omasum laminae were taken from eight adult crossbred bovines. An isolated fragment of the mucosa was fitted in a tissue diffusion chamber. Valeric acid and CrEDTA were added to ruminal fluid and placed on the mucosal side and buffer solution was placed on the serosal side. Fractional absorption rates were measured by exponential VFA:Cr ratio decay over time. Metabolism rate was determined as the difference between VFA absorbed and VFA which appeared on the serosal side over time. Mitotic index was higher in omasum (0.52%) than in rumen epithelium (0.28%). VFA fractional absorption rate was higher in omasum (4.6%/h.cm²) than in rumen (0.4%/h.cm²). Acetate, propionate, butyrate, and valerate showed similar fractional absorption rates in both fragments. Percentage of metabolized acetate and propionate was lower than butyrate and valerate in both stomach compartments. In the rumen, individual VFA metabolism rates were similar (mean of 7.7 , but in the omasum, valerate (90.0 was more metabolized than butyrate (59.6 propionate (69.8 and acetate (51.7 . Correlation between VFA metabolism and mitotic index was positive in the rumen and in the omasum. In conclusion, VFA metabolism and absorption potential per surface of the omasum is higher than that of the rumen. Variations on rumen and omasum absorption capacities occur in the same way, and there are indications that factors capable of stimulating rumen wall proliferation are similarly capable of stimulating omasum walls.


2013 ◽  
Vol 64 (4) ◽  
pp. 409 ◽  
Author(s):  
Bidhyut Kumar Banik ◽  
Zoey Durmic ◽  
William Erskine ◽  
Phillip Nichols ◽  
Kioumars Ghamkhar ◽  
...  

Biserrula (Biserrula pelecinus L.) is an important annual pasture legume for the wheatbelt of southern Australia and has been found to have lower levels of methane output than other pasture legumes when fermented by rumen microbes. Thirty accessions of the biserrula core germplasm collection were grown in the glasshouse to examine intra-specific variability in in vitro rumen fermentation, including methane output. One biserrula cultivar (Casbah) was also grown at two field locations to confirm that low methanogenic potential was present in field-grown samples. All of the biserrula accessions had significantly reduced methane [range 0.5–8.4 mL/g dry matter (DM)] output compared with subterranean clover (28.4 mL/g DM) and red clover (36.1 mL/g DM). There was also significant variation in fermentability profiles (except for volatile fatty acids) among accessions of the core collection. Methanogenic potential exhibited 86% broad-sense heritability within the biserrula core collection. The anti-methanogenic and gas-suppressing effect of biserrula was also confirmed in samples grown in the field. In conclusion, biserrula showed variability in in vitro fermentation traits including reduced methane production compared with controls. This bioactivity of biserrula also persists in the field, indicating scope for further selection of biserrula as an elite methane-mitigating pasture.


1970 ◽  
Vol 30 (5) ◽  
pp. 812-818 ◽  
Author(s):  
J. J. O'Connor ◽  
G. S. Myers ◽  
D. C. Maplesden ◽  
G. W. Vander Noot

2018 ◽  
Vol 39 (6) ◽  
pp. 2621
Author(s):  
Ludmila Couto Gomes ◽  
Claudete Regina Alcalde ◽  
Julio Cesar Damasceno ◽  
Luiz Paulo Rigolon ◽  
Ana Paula Silva Possamai ◽  
...  

Feeding goats with calcium salts of fatty acids (CSFA) can supply ruminants with lipids, with minimal effects on ruminal fermentation and fiber digestibility. However, there is a shortage of information on the effect of CSFA on characteristics of rumen fermentation in grassland goats. Thus, the present study aimed to assess the addition of CSFA to concentrate on the parameters of rumen fermentation of grazing goats. Five rumen cannulated goats were distributed in a Latin square 5x5 design (treatments: 0%, 1.5%, 3.0%, 4.5% and 6.0% CSFA. The pH, ammonia N and volatile fatty acids (VFA) content were analyzed in the ruminal fluid at 0, 2, 4, 6 and 8 hours after concentrate supplementation. The pH and ammonia N concentration showed a linear effect with the addition of CSFA. There was no effect observed for the VFA molar concentration after grazing goats were fed with the experimental diet. In conclusion, further research is needed to investigate the addition of CSFA to goat diets because there is evidence that CSFA increases ruminal pH and decreases excess ruminal ammonia without changing the VFA concentration in the rumen fluid.


1970 ◽  
Vol 46 (3) ◽  
pp. 325-335
Author(s):  
E. Maleki ◽  
G.Y. Meng ◽  
M. Faseleh Jahromi ◽  
R. Jorfi ◽  
A. Khoddami ◽  
...  

The objective of this study was to determine the effect of pomegranate (Punica granatum L.) seed oil (PSO) on gas and methane (CH4) production, ruminal fermentation and microbial populations under in vitro conditions. Three treatments consisting of a control diet containing 10 mg tallow (CON); the control diet with 5 mg PSO + 5 mg tallow (MPSO) and the control diet containing 10 mg PSO (HPSO) were compared. Ten mg of the experimental fat/oil samples were inserted into a gas-tight 100 mL plastic syringe containing 30 mL of an incubation inoculum and 250 mg of a basic substrate of a hay/concentrate (1/1, w/w) mixture. In vitro gas production was recorded over 0, 2, 4, 6, 8, 10, 12 and 24 h of incubation. After 24 hours, incubation was stopped, and methane production, pH, volatile fatty acids (VFAs) and microbial counts were measured in the inoculant. Gas production at 4, 6, 8, 10, 12 and 24 h incubation, metabolizable energy and in vitro organic matter disappearance increased linearly and quadratically as level of PSO increased. Furthermore, the 10 mg PSO (HPSO) decreased CH4 production by 21.0% compared with the control (CON) group. There were no significant differences in total and individual VFA concentrations between different levels of PSO, except for butyric acid. After 24 h of incubation, methanogenesis decreased in the HPSO compared with the MPSO and CON treatments. In addition, total bacteria and protozoa counts increased with rising PSO levels, while population methanogenesis declined significantly. These results suggested that PSO could reduce methane emissions, which might be beneficial to nutrient utilization and growth in ruminants.


Sign in / Sign up

Export Citation Format

Share Document