scholarly journals Genetic variants in the p53 pathway influence implantation and pregnancy maintenance in IVF treatments using donor oocytes

Author(s):  
Arturo R. Palomares ◽  
Adrián Alberto Castillo-Domínguez ◽  
Maximiliano Ruiz-Galdón ◽  
Kenny A. Rodriguez-Wallberg ◽  
Armando Reyes-Engel

Abstract Purpose Single-nucleotide polymorphisms (SNPs) in the p53 pathways have shown to play a role in endometrial receptivity and implantation in infertile women undergoing in vitro fertilization (IVF). The present study aimed to assess the influence of these gene variants over pregnancy success through a receptivity model in recipients of egg donation treatments, when factors such as age and quality of the oocytes are standardized. Methods A nested case–control study was performed on 234 female patients undergoing their first fresh IVF treatment as recipients of donor oocytes. Genotyping of TP53 Arg72Pro (rs1042522), LIF (rs929271), MDM4 (rs1563828), and USP7 (rs1529916) SNPs in the recipients allowed comparison of allele and genotype frequencies and their association with the IVF treatment outcome. Results Grouped by genotypes, patients showed differences in IVF outcomes after the embryo transfer. Arg72Pro (rs1042522) gene variant was associated to changes in implantation and clinical pregnancy rates. The polymorphisms USP7 (rs1529916) and MDM4 (rs1563828) were associated to differential ongoing pregnancy rates and variable miscarriage events, respectively. Conclusions This study highlights the association between gene polymorphisms related to P53 function and their influence over IVF reproductive outcomes. Arg72Pro variant may influence early events, as lower implantation rates were found in homozygous for Pro72 allele. By contrast, MDM4 (rs1563828) and USP7 (rs1529916) gene variants were associated with the later maintenance of pregnancy.

Author(s):  
Cheng-Hsuan Wu ◽  
Shun-Fa Yang ◽  
Hui-Mei Tsao ◽  
Yu-Jun Chang ◽  
Tsung-Hsien Lee ◽  
...  

The aim of this study was to examine the effects of single-nucleotide polymorphisms (SNPs) in the anti-Müllerian hormone (AMH) and AMH type II receptor (AMHRII) genes on in vitro fertilization (IVF) outcomes. In this prospective cohort study, we genotyped the AMH 146 T > G, AMHRII −482 A > G and AMHRII IVS1 +149 T > A variants in 635 women undergoing their first cycle of controlled ovarian stimulation for IVF. DNA was extracted from the peripheral blood of all participants, and the SNPs were genotyped by real-time polymerase chain reaction. The distributions, frequencies of genes, and correlation with clinical pregnancy of IVF were analyzed. The AMH 146 T > G G/G genotype in women was associated with a lower clinical pregnancy rate (T/T: 55.0%, T/G: 51.8%, G/G: 40.0%; p < 0.05). Women with the AMH 146 T > G GG genotype were half as likely to have a clinical pregnancy compared with women with TT genotypes (OR = 0.55, 95% CI: 0.34–0.88, p = 0.014). With multivariate analysis, the AMH 146 T > G GG genotype remains as a significant independent factor to predict clinical pregnancy (p = 0.014). No significant difference was found between AMHRII polymorphisms and clinical pregnancy outcomes of IVF. In conclusion, our results show that AMH 146 T > G seems to be a susceptibility biomarker capable of predicting IVF pregnancy outcomes. Further studies should focus on the mechanism of these associations and the inclusion of other ethnic populations to confirm the findings of this study.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Laura Costantini ◽  
Paula Moreno-Sanz ◽  
Chinedu Charles Nwafor ◽  
Silvia Lorenzi ◽  
Annarita Marrano ◽  
...  

Abstract Background Grapevine reproductive development has direct implications on yield. It also impacts on berry and wine quality by affecting traits like seedlessness, berry and bunch size, cluster compactness and berry skin to pulp ratio. Seasonal fluctuations in yield, fruit composition and wine attributes, which are largely driven by climatic factors, are major challenges for worldwide table grape and wine industry. Accordingly, a better understanding of reproductive processes such as gamete development, fertilization, seed and fruit set is of paramount relevance for managing yield and quality. With the aim of providing new insights into this field, we searched for clones with contrasting seed content in two germplasm collections. Results We identified eight variant pairs that seemingly differ only in seed-related characteristics while showing identical genotype when tested with the GrapeReSeq_Illumina_20K_SNP_chip and several microsatellites. We performed multi-year observations on seed and fruit set deriving from different pollination treatments, with special emphasis on the pair composed by Sangiovese and its seedless variant locally named Corinto Nero. The pollen of Corinto Nero failed to germinate in vitro and gave poor berry set when used to pollinate other varieties. Most berries from both open- and cross-pollinated Corinto Nero inflorescences did not contain seeds. The genetic analysis of seedlings derived from occasional Corinto Nero normal seeds revealed that the few Corinto Nero functional gametes are mostly unreduced. Moreover, three genotypes, including Sangiovese and Corinto Nero, were unexpectedly found to develop fruits without pollen contribution and occasionally showed normal-like seeds. Five missense single nucleotide polymorphisms were identified between Corinto Nero and Sangiovese from transcriptomic data. Conclusions Our observations allowed us to attribute a seedlessness type to some variants for which it was not documented in the literature. Interestingly, the VvAGL11 mutation responsible for Sultanina stenospermocarpy was also discovered in a seedless mutant of Gouais Blanc. We suggest that Corinto Nero parthenocarpy is driven by pollen and/or embryo sac defects, and both events likely arise from meiotic anomalies. The single nucleotide polymorphisms identified between Sangiovese and Corinto Nero are suitable for testing as traceability markers for propagated material and as functional candidates for the seedless phenotype.


Sign in / Sign up

Export Citation Format

Share Document