Effect of solvent exchanging process on the preparation of the hydrophobic silica aerogels by ambient pressure drying method using sodium silicate precursor

2007 ◽  
Vol 42 (20) ◽  
pp. 8418-8425 ◽  
Author(s):  
A. Parvathy Rao ◽  
A. Venkateswara Rao ◽  
G. M. Pajonk ◽  
Poonam M. Shewale
2012 ◽  
Vol 531-532 ◽  
pp. 103-107 ◽  
Author(s):  
Fei Shi ◽  
Jing Xiao Liu ◽  
Xiao Li Dong ◽  
Zhi Wei Zhang ◽  
Peng Cheng Du ◽  
...  

Hydrophobic silica aerogels were prepared from industrial microsilica via ambient pressure drying. The process consists of two stages, synthesis of sodium silicate solution from microsilica by hydrothermal reaction with sodium hydroxide, and preparation of silica aqueous gel and porous silica aerogels from the obtained sodium silicate solution. The mixed solution of hexane/ethanol/trimethylchlorosilane was used to modify the sol-gel derived silica aqueous gel so as to obtain porous structure by ambient pressure drying. The microstructure, pore properties of the silica aerogels were analyzed by FTIR and N2 adsorption-desorption methods, and the oil adsorption of the synthesized silica aerogels was investigated. The results indicate that the obtained silica aerogels are light-weight and hydrophobic porous materials, with the specific surface area of 767~828 m2•g-1, porosity of 91.5~95.1% and the average pore diameter of 5.22~8.02 nm. The synthesized silica aerogels have good oil adsorption capacity and the highest saturated oil adsorption rate can achieve 1105%.


RSC Advances ◽  
2016 ◽  
Vol 6 (102) ◽  
pp. 100326-100333 ◽  
Author(s):  
Jingjing Fu ◽  
Chunxia He ◽  
Jingda Huang ◽  
Zhilin Chen ◽  
Siqun Wang

CNF–silica composite aerogels with reinforced mechanical properties were prepared under an ambient pressure drying method and optimized by a response surface methodology.


2007 ◽  
Vol 61 (14-15) ◽  
pp. 3130-3133 ◽  
Author(s):  
Seunghun Lee ◽  
Young Chul Cha ◽  
Hae Jin Hwang ◽  
Ji-Woong Moon ◽  
In Sub Han

2006 ◽  
Vol 510-511 ◽  
pp. 910-913 ◽  
Author(s):  
Seung Hun Lee ◽  
Eun A Lee ◽  
Hae Jin Hwang ◽  
Ji Woong Moon ◽  
In Sub Han ◽  
...  

Hydrophobic silica aerogels were synthesized by an ambient pressure drying method from silicic acid with a different pH value, which was prepared from sodium silicate solution (water glass). In this study we chose various hydrocarbon class solvents such as pentane, hexane, heptane, and toluene, and performed surface modification in TMCS (trimethylchlorosilane)/solvent solutions in order to improve reproducibility in aerogel production. Densities of the aerogels were about 0.1 ~ 0.3 g/cm3 , and apparent porosities were 88 ~ 96 %, depending on the processing conditions. Specific surface area was approximately 730 ~ 950 m2/g, and average pore size around 10 nm.


Author(s):  
Oznur Kaya Cakmak ◽  
Khalil T. Hassan ◽  
Jiabin Wang ◽  
Xiao Han ◽  
Lidija Šiller

AbstractHere we study how graphene oxide affects silica aerogels and their physical and mechanical properties by examining volume shrinkage, pore volume, surface area and compressive strength of these composite aerogels. Composite aerogels were made through adding different amount of graphene oxide (GO) to sodium silicate precursor by using ambient pressure drying method. Additionally, the chemical composition of the composite aerogels was determined using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. A rougher structure was observed when the GO loading increased and the characteristic peak of GO in XRD disappeared due to the random distribution of GO within the silica matrix. FTIR spectrum of composite aerogels shows that the relative intensity of silanol groups on the silica matrix have downward tendency with the addition of GO. The specific surface area had maxima with the addition of 0.01 wt% GO surface area to 578 m2 /g. The mechanical strength of aerogels was increased, with the loading of GO from 0.0 wt% to 0.2 wt%, and the compressive modulus increased from 0.02 MPa to 0.22 MPa.


Sign in / Sign up

Export Citation Format

Share Document