Graphene/PANI hybrid film with enhanced thermal conductivity by in situ polymerization

2018 ◽  
Vol 53 (12) ◽  
pp. 8855-8865 ◽  
Author(s):  
Jie Miao ◽  
Haoliang Li ◽  
Hanxun Qiu ◽  
Xian Wu ◽  
Junhe Yang
RSC Advances ◽  
2020 ◽  
Vol 10 (23) ◽  
pp. 13517-13524
Author(s):  
Chunbo Wang ◽  
Bing Cong ◽  
Junyu Zhao ◽  
Xiaogang Zhao ◽  
Daming Wang ◽  
...  

In situ synthesis of MWCNT-graft-polyimides enhanced thermal conductivity at a relatively low loading.


2021 ◽  
Author(s):  
Shaojie Sun ◽  
Xinyu Wang ◽  
Junjie Zhou ◽  
Siqi Zhang ◽  
Kongyu Ge ◽  
...  

Abstract The application of ceramic materials is limited due to the complicated preparation process and intrinsic brittleness. In this work, a pressureless manufacturing route that enables the formation of barium aluminosilicate (BAS) glass-ceramic consisting of internal β-Sialon fibers with enhanced thermal conductivity is developed. By adjusting the carbon source content, composites with different Sialon contents can be easily fabricated. The thermal conductivity of the sample with 3.5 wt.% is improved to 5.845 W/m ∙ K with the Sialon content of 26 wt.% in the composite, which is 112.64 % higher than that of the pure BAS matrix. The theoretical models suggest that the enhanced thermal conductivity is mainly ascribed to the thermal conduction network constructed by Sialon fibers. This work provides a method with industrial application prosperity to fabricate the high temperature ceramic matrix composite of different sizes and complex shapes.


Carbon ◽  
2018 ◽  
Vol 126 ◽  
pp. 319-327 ◽  
Author(s):  
Haoliang Li ◽  
Sichang Dai ◽  
Jie Miao ◽  
Xian Wu ◽  
Navya Chandrasekharan ◽  
...  

2018 ◽  
Vol 6 (12) ◽  
pp. 3004-3015 ◽  
Author(s):  
Yongqiang Guo ◽  
Genjiu Xu ◽  
Xutong Yang ◽  
Kunpeng Ruan ◽  
Tengbo Ma ◽  
...  

Significantly improved thermal conductivities and a more accurate thermal conductivity model were achieved.


2020 ◽  
Vol 54 (23) ◽  
pp. 3447-3456
Author(s):  
Dongouk Kim ◽  
Sang-Eui Lee ◽  
Yoonchul Sohn

Polymer composites with a high electrical conductivity ( σ) to thermal conductivity ( k) ratio have been intensively investigated in recent years. While highly conductive materials, such as metallic fillers or conducting polymers, were used to enhance σ, microstructural engineering was used to decrease k by forming porous structures, such as aerogels or 3D networks. These structures, however, were mechanically vulnerable and could only have limited applications. In this study, multiwalled carbon nanotube /silicone composites with a high σ/k ratio were developed by forming a double-segregated multiwalled carbon nanotube network in the porous body of the composites. The unique microstructure of the composites was created by a novel fabrication process: layer-by-layer deposition with in-situ polymerization of silicone emulsion particles dispersed in a water solvent. This novel process yielded very thick films, >200 µm, with high σ/k values, ∼2 × 104 (S/m)/(W/m·K). These high σ/k composites can be used for various applications, such as resistive heating elements, thermoelectric materials, and wearable thermotherapy.


Sign in / Sign up

Export Citation Format

Share Document